ArcGIS for Desktop

  • Dokumentation
  • Preise
  • Support

  • My Profile
  • Hilfe
  • Sign Out
ArcGIS for Desktop

ArcGIS Online

Die Mapping-Plattform für Ihre Organisation

ArcGIS for Desktop

Ein vollständiges professionelles GIS

ArcGIS for Server

GIS in Ihrem Unternehmen

ArcGIS for Developers

Werkzeuge zum Erstellen standortbezogener Apps

ArcGIS Solutions

Kostenlose Karten- und App-Vorlagen für Ihre Branche

ArcGIS Marketplace

Rufen Sie Apps und Daten für Ihre Organisation ab.

  • Dokumentation
  • Preise
  • Support
Esri
  • Anmelden
user
  • Eigenes Profil
  • Abmelden

Help

  • Startseite
  • Erste Schritte
  • Karte
  • Analysieren
  • Verwalten von Daten
  • Werkzeuge
  • Mehr...

Bivariate normal distributions

Mit der Geostatistical Analyst-Lizenz verfügbar.

Disjunctive kriging requires that the data has a bivariate normal distribution. Also, to develop probability and quantile maps, it's assumed that the data comes from a full multivariate normal distribution. To check for a univariate normal distribution, you can use normal QQ plots or histograms (neither of these checks guarantees that the data comes from a full multivariate normal distribution, but it is often reasonable to assume so if univariate normal distributions are detected using these diagnostic tools).

Consider the following probability statement:

f(p,h) = Prob[Z(s) ≤zp, Z(s + h) ≤zp],

where zp is the standard normal quantile for some probability p. For example, a familiar standard normal quantile occurs when p = 0.975, then zp = 1.96, and when p = 0.5, then zp = 0, and when p = 0.025, then zp = -1.96. The probability statement above takes a variable Z at location s and another variable Z at some other location s + h and gives the probability that they are both less than zp. This probability statement is a function f(p,h) depending on p (and consequently zp) and h. The function will also depend on the amount of autocorrelation between Z(s) and Z(s + h).

Assume that Z(s) and Z(s + h) have a bivariate normal distribution. If the autocorrelation is known, there are formulas for f(p,h). Suppose h is constant and only p changes. You would expect the function to look like this:

Bivariate distribution
Bivariate distribution

The bottom figure looks like a cumulative probability distribution. Now, suppose that p is fixed, and f(p,h) changes with h.

First, suppose that h is very small. In that case, Prob[Z(s) ≤zp, Z(s + h) ≤zp] is very nearly the same as Prob[Z(s) ≤zp] = p. Next, suppose that h is very large. In that case, Prob[Z(s) ≤zp, Z(s + h) ≤zp] is very nearly the same as Prob[Z(s) ≤zp] Prob[Z(s + h) ≤zp] = p2 (because Z(s) and Z(s + h) are very nearly independent). Thus, for fixed p, you expect f(p,h) to vary between p and p2. Now, considering f(p,h) as a function of both p and the length of h, you might observe something similar to the following figure:

Bivariate distribution

This function can be converted to semivariograms and covariance functions for indicators. If you note that Prob[Z(s) ≤zp, Z(s + h) ≤zp] = E[I(Z(s) ≤zp)xI(Z(s + h) ≤zp)], where I(statement) is the indicator function—is 1 if statement is true, otherwise it is 0—the covariance function for the indicators for fixed p is

CI(h;p) = f(p,h) –p2,

and the semivariogram for indicators for fixed p is

 γI(h;p) = p - f(p,h).

Therefore, you can estimate the semivariogram and covariance function on the indicators of the original data and use these to obtain the expected semivariograms and covariance functions of indicators for various values of p.

Learn more about bivariate normal distribution

Learn more about semivariograms and covariance functions

Feedback zu diesem Thema?

ArcGIS for Desktop

  • Startseite
  • Dokumentation
  • Preise
  • Support

ArcGIS Plattform

  • ArcGIS Online
  • ArcGIS for Desktop
  • ArcGIS for Server
  • ArcGIS for Developers
  • ArcGIS Solutions
  • ArcGIS Marketplace

Über Esri

  • Über uns
  • Karriere
  • Insider-Blog
  • User Conference
  • Developer Summit
Esri
© Copyright 2016 Environmental Systems Research Institute, Inc. | Datenschutz | Rechtliches