ArcGIS for Desktop

  • Dokumentation
  • Preise
  • Support

  • My Profile
  • Hilfe
  • Sign Out
ArcGIS for Desktop

ArcGIS Online

Die Mapping-Plattform für Ihre Organisation

ArcGIS for Desktop

Ein vollständiges professionelles GIS

ArcGIS for Server

GIS in Ihrem Unternehmen

ArcGIS for Developers

Werkzeuge zum Erstellen standortbezogener Apps

ArcGIS Solutions

Kostenlose Karten- und App-Vorlagen für Ihre Branche

ArcGIS Marketplace

Rufen Sie Apps und Daten für Ihre Organisation ab.

  • Dokumentation
  • Preise
  • Support
Esri
  • Anmelden
user
  • Eigenes Profil
  • Abmelden

Help

  • Startseite
  • Erste Schritte
  • Karte
  • Analysieren
  • Verwalten von Daten
  • Werkzeuge
  • Mehr...

Understanding ordinary kriging

Mit der Geostatistical Analyst-Lizenz verfügbar.

Ordinary kriging assumes the model

Z(s) = µ + ε(s),

where µ is an unknown constant. One of the main issues concerning ordinary kriging is whether the assumption of a constant mean is reasonable. Sometimes there are good scientific reasons to reject this assumption. However, as a simple prediction method, it has remarkable flexibility. The following figure is an example in one spatial dimension:

Ordinary kriging with one spatial dimension

It looks like the data is elevation values collected from a line transect through a valley and over a mountain. It also looks like the data is more variable on the left and becomes smoother on the right. In fact, this data was simulated from the ordinary kriging model with a constant mean µ. The true but unknown mean is given by the dashed line. Thus, ordinary kriging can be used for data that seems to have a trend. There is no way to decide, based on the data alone, whether the observed pattern is the result of autocorrelation—among the errors ε(s) with µ constant—or trend, with µ(s) changing with s.

Ordinary kriging can use either semivariograms or covariances (which are the mathematical forms you use to express autocorrelation), use transformations and remove trends, and allow for measurement error.

Verwandte Themen

  • Using ordinary kriging to create a prediction map
  • Using ordinary kriging to create a prediction standard error map
  • Creating a prediction map using ordinary kriging with a data transformation
  • Using ordinary kriging with detrending to create a prediction map
Feedback zu diesem Thema?

ArcGIS for Desktop

  • Startseite
  • Dokumentation
  • Preise
  • Support

ArcGIS Plattform

  • ArcGIS Online
  • ArcGIS for Desktop
  • ArcGIS for Server
  • ArcGIS for Developers
  • ArcGIS Solutions
  • ArcGIS Marketplace

Über Esri

  • Über uns
  • Karriere
  • Insider-Blog
  • User Conference
  • Developer Summit
Esri
© Copyright 2016 Environmental Systems Research Institute, Inc. | Datenschutz | Rechtliches