Mit der Spatial Analyst-Lizenz verfügbar.
Zusammenfassung
Defines the Ordinary Kriging model. The available model types are Spherical, Circular, Exponential, Gaussian, and Linear.
Auswertung
The KrigingModelOrdinary object is used in the Kriging tool.
Ordinary Kriging assumes the model:
Z(s) = µ + ε(s)
The default value for lagSize is set to the default output cell size.
For majorRange, partialSill, and nugget, a default value will be calculated internally if nothing is specified.
Syntax
KrigingModelOrdinary ({semivariogramType}, {lagSize}, {majorRange}, {partialSill}, {nugget})
Parameter | Erläuterung | Datentyp |
semivariogramType | Semivariogram model to be used.
(Der Standardwert ist SPHERICAL) | String |
lagSize | The lag size to be used in model creation. The default is the output raster cell size. | Double |
majorRange | Represents a distance beyond which there is little or no correlation. | Double |
partialSill | The difference between the nugget and the sill. | Double |
nugget | Represents the error and variation at spatial scales too fine to detect. The nugget effect is seen as a discontinuity at the origin. | Double |
Eigenschaften
Eigenschaft | Erläuterung | Datentyp |
semivariogramType (Lesen und schreiben) | Semivariogram model to be used.
| String |
lagSize (Lesen und schreiben) | The lag size to be used in model creation. The default is the output raster cell size. | Double |
majorRange (Lesen und schreiben) | Represents a distance beyond which there is little or no correlation. | Double |
partialSill (Lesen und schreiben) | The difference between the nugget and the sill. | Double |
nugget (Lesen und schreiben) | Represents the error and variation at spatial scales too fine to detect. The nugget effect is seen as a discontinuity at the origin. | Double |
Codebeispiel
KrigingModelOrdinary example 1 (Python window)
Demonstrates how to create a KrigingModelOrdinary object and use it in the Kriging tool within the Python window.
import arcpy
from arcpy import env
from arcpy.sa import *
env.workspace = "C:/sapyexamples/data"
kModelOrdinary = KrigingModelOrdinary("CIRCULAR", 70000, 250000, 180000, 34000)
outKrigingOrd1 = Kriging("ca_ozone_pts.shp", "ELEVATION", kModelOrdinary, 2000, RadiusVariable(),"")
outKrigingOrd1.save("C:/sapyexamples/output/kordinary1")
KrigingModelOrdinary example 2 (stand-alone script)
Calculates a Kriging surface using the KrigingModelOrdinary object.
# Name: KrigingModelOrdinary_Ex_02.py
# Description: Uses the KrigingModelOrdinary object to execute the Kriging tool.
# Requirements: Spatial Analyst Extension
# Import system modules
import arcpy
from arcpy import env
from arcpy.sa import *
# Set environment settings
env.workspace = "C:/sapyexamples/data"
# Set local variables
inPointFeature = "ca_ozone_pts.shp"
outVarRaster = "C:/sapyexamples/output/ovariance2"
# Create KrigingModelOrdinary Object
lagSize = 70000
majorRange = 250000
partialSill = 180000
nugget = 34000
kModelOrdinary = KrigingModelOrdinary("CIRCULAR", lagSize, majorRange,
partialSill, nugget)
# Check out the ArcGIS Spatial Analyst extension license
arcpy.CheckOutExtension("Spatial")
# Execute Kriging
outKrigingOrd2 = Kriging(inPointFeature, "ELEVATION", kModelOrdinary, 2000,
RadiusFixed(200000, 10), outVarRaster)
# Save the output
outKrigingOrd2.save("C:/sapyexamples/output/kordinary2")