ArcGIS Desktop

  • ArcGIS Pro
  • ArcMap

  • My Profile
  • Hilfe
  • Sign Out
ArcGIS Desktop

ArcGIS Online

Die Mapping-Plattform für Ihre Organisation

ArcGIS Desktop

Ein vollständiges professionelles GIS

ArcGIS Enterprise

GIS in Ihrem Unternehmen

ArcGIS Developers

Werkzeuge zum Erstellen standortbezogener Apps

ArcGIS Solutions

Kostenlose Karten- und App-Vorlagen für Ihre Branche

ArcGIS Marketplace

Rufen Sie Apps und Daten für Ihre Organisation ab.

  • Dokumentation
  • Support
Esri
  • Anmelden
user
  • Eigenes Profil
  • Abmelden

ArcMap

  • Startseite
  • Erste Schritte
  • Karte
  • Analysieren
  • Verwalten von Daten
  • Werkzeuge
  • Erweiterungen

Kriging in Geostatistical Analyst

Mit der Geostatistical Analyst-Lizenz verfügbar.

Kriging assumes that at least some of the spatial variation observed in natural phenomena can be modeled by random processes with spatial autocorrelation, and require that the spatial autocorrelation be explicitly modeled. Kriging techniques can be used to describe and model spatial patterns, predict values at unmeasured locations, and assess the uncertainty associated with a predicted value at the unmeasured locations.

The Geostatistical Wizard offers several types of kriging, which are suitable for different types of data and have different underlying assumptions:

  • Ordinary Kriging
  • Simple Kriging
  • Universal Kriging
  • Indicator Kriging
  • Probability Kriging
  • Disjunctive Kriging
  • Empirical Bayesian Kriging
  • Areal Interpolation

These methods can be used to produce the following surfaces:

  • Maps of kriging predicted values
  • Maps of kriging standard errors associated with predicted values
  • Maps of probability, indicating whether or not a predefined critical level was exceeded
  • Maps of quantiles for a predetermined probability level

The exceptions to this are:

  1. Indicator and Probability kriging, which produce the following:
    • Maps of probability, indicating whether or not a predefined critical level was exceeded
    • Maps of standard errors of indicators
  2. Areal Interpolation, which produces the following:
    • Maps of predicted values
    • Maps of standard errors associated with predicted values

There are several components of geostatistical models. The most important are to examine the data through exploratory spatial data analysis (ESDA) and variography, build a kriging model to suit your needs (see what are the different kriging models?), and check that the results are accurate by performing cross validation and validation and comparing alternate models to choose the best one.

ArcGIS Desktop

  • Startseite
  • Dokumentation
  • Support

ArcGIS

  • ArcGIS Online
  • ArcGIS Desktop
  • ArcGIS Enterprise
  • ArcGIS
  • ArcGIS Developer
  • ArcGIS Solutions
  • ArcGIS Marketplace

Über Esri

  • Über uns
  • Karriere
  • Esri Blog
  • User Conference
  • Developer Summit
Esri
Wir sind an Ihrer Meinung interessiert.
Copyright © 2021 Esri. | Datenschutz | Rechtliches