This document is archived and information here might be outdated. Recommended version. |
ArcObjects namespaces > Geometry > ESRI.ArcGIS.Geometry > Interfaces > IC > IConstructGeodetic Interface > IConstructGeodetic.ConstructGeodesicEllipse Method (ArcObjects .NET 10.4 SDK) |
constructs a geodesic ellipse with origin at the specified point and semi major axis oriented according to the specified azimuth. The 'by angle' and 'by deviation' densification options are supported.
[Visual Basic .NET] Public Sub ConstructGeodesicEllipse ( _ ByVal CenterPoint As IPoint, _ ByVal LinearUnit As ILinearUnit, _ ByVal semiMajorAxisLength As Double, _ ByVal semiMinorAxisLength As Double, _ ByVal semiMajorAxisAzimuth As Double, _ ByVal densifyMethod As esriCurveDensifyMethod, _ ByVal densifyParameter As Double _ )
[C#] public void ConstructGeodesicEllipse ( IPoint CenterPoint, ILinearUnit LinearUnit, double semiMajorAxisLength, double semiMinorAxisLength, double semiMajorAxisAzimuth, esriCurveDensifyMethod densifyMethod, double densifyParameter );
[C++]
HRESULT ConstructGeodesicEllipse(
IPoint* CenterPoint,
ILinearUnit* LinearUnit,
double semiMajorAxisLength,
double semiMinorAxisLength,
double semiMajorAxisAzimuth,
esriCurveDensifyMethod densifyMethod,
double densifyParameter
);
[C++]
Parameters CenterPoint
CenterPoint is a parameter of type IPoint LinearUnit
LinearUnit is a parameter of type ILinearUnit semiMajorAxisLength semiMajorAxisLength is a parameter of type double semiMinorAxisLength semiMinorAxisLength is a parameter of type double semiMajorAxisAzimuth semiMajorAxisAzimuth is a parameter of type double densifyMethod
densifyMethod is a parameter of type esriCurveDensifyMethod densifyParameter densifyParameter is a parameter of type double
Constructs a geodesic ellipse centered on the specified point. The esriCurveDensifyByAngle and esriCurveDensifyByDeviation densification methods are supported. If this method is applied to a polygon, the output polygon will have one or two parts, depending on the size of the ellipse. If the ellipse covers both poles and covers a hemisphere, the ellipse perimeter becomes the inner ring (the hole) and the horizon rectangle for the GCS becomes the outer ring.