ArcGIS for Desktop

  • Documentación
  • Precios
  • Soporte

  • My Profile
  • Ayuda
  • Sign Out
ArcGIS for Desktop

ArcGIS Online

La plataforma de representación cartográfica para tu organización

ArcGIS for Desktop

Un completo SIG profesional

ArcGIS for Server

SIG en tu empresa

ArcGIS for Developers

Herramientas para crear aplicaciones basadas en la ubicación

ArcGIS Solutions

Plantillas de aplicaciones y mapas gratuitas para tu sector

ArcGIS Marketplace

Obtén aplicaciones y datos para tu organización.

  • Documentación
  • Precios
  • Soporte
Esri
  • Iniciar sesión
user
  • Mi perfil
  • Cerrar sesión

Help

  • Inicio
  • Introducción
  • Mapa
  • Analizar
  • Administrar datos
  • Herramientas
  • Más...

SearchNeighborhoodSmoothCircular

  • Resumen
  • Sintaxis
  • Propiedades
  • Ejemplo de código

Resumen

The SearchNeighborhoodSmoothCircular class can be used to define the search neighborhood for Empirical Bayesian Kriging, IDW, Local Polynomial Interpolation, and Radial Basis Functions (only when the INVERSE_MULTIQUADRIC_FUNCTION keyword is used). The class accepts inputs for the radius of the searching circle and a smoothing factor.

Learn more about smooth interpolation

Sintaxis

SearchNeighborhoodSmoothCircular ({radius}, {smoothFactor})
ParámetroExplicaciónTipo de datos
radius

The distance, in map units, specifying the length of the radius of the searching circle.

Double
smoothFactor

Determines how much smoothing will be performed. 0 is no smoothing; 1 is the maximum amount of smoothing.

Double

Propiedades

PropiedadExplicaciónTipo de datos
radius
(Lectura y escritura)

The distance, in map units, specifying the length of the radius of the searching circle.

Double
smoothFactor
(Lectura y escritura)

Determines how much smoothing will be performed: 0 is no smoothing, and 1 is the maximum amount of smoothing.

Double
nbrType
(Sólo lectura)

The neighborhood type: Smooth or Standard.

String

Ejemplo de código

SearchNeighborhoodSmoothCircular (Python window)

An example of SearchNeighborhoodSmoothCircular with Empirical Bayesian Kriging to produce an output raster.

import arcpy
arcpy.env.workspace = "C:/gapyexamples/data"
arcpy.LocalPolynomialInterpolation_ga(
    "ca_ozone_pts", "OZONE", "outLPI", "C:/gapyexamples/output/lpiout", "2000",
    "2", arcpy.SearchNeighborhoodSmooth(300000, 300000, 0, 0.5), "QUARTIC", 
    "", "", "", "", "PREDICTION")
SearchNeighborhoodSmoothCircular (stand-alone script)

An example of SearchNeighborhoodSmoothCircular with Empirical Bayesian Kriging to produce an output raster.

# Name: LocalPolynomialInterpolation_Example_02.py
# Description: Local Polynomial interpolation fits many polynomials, each 
#              within specified overlapping neighborhoods. 
# Requirements: Geostatistical Analyst Extension

# Import system modules
import arcpy

# Set environment settings
arcpy.env.workspace = "C:/gapyexamples/data"

# Set local variables
inPointFeatures = "ca_ozone_pts.shp"
zField = "ozone"
outLayer = "outLPI"
outRaster = "C:/gapyexamples/output/lpiout"
cellSize = 2000.0
power = 2
kernelFunction = "QUARTIC"
bandwidth = ""
useConNumber = ""
conNumber = ""
weightField = ""
outSurface = "PREDICTION"

# Set variables for search neighborhood
majSemiaxis = 300000
minSemiaxis = 300000
angle = 0
smoothFactor = 0.5
searchNeighbourhood = arcpy.SearchNeighborhoodSmooth(majSemiaxis, minSemiaxis,
                                                     angle, smoothFactor)


# Check out the ArcGIS Geostatistical Analyst extension license
arcpy.CheckOutExtension("GeoStats")

# Execute LocalPolynomialInterpolation
arcpy.LocalPolynomialInterpolation_ga(inPointFeatures, zField, outLayer, outRaster,
                                      cellSize, power, searchNeighbourhood,
                                      kernelFunction, bandwidth, useConNumber,
                                      conNumber, weightField, outSurface)
¿Algún comentario sobre este tema?

ArcGIS for Desktop

  • Inicio
  • Documentación
  • Precios
  • Soporte

Plataforma ArcGIS

  • ArcGIS Online
  • ArcGIS for Desktop
  • ArcGIS for Server
  • ArcGIS for Developers
  • ArcGIS Solutions
  • ArcGIS Marketplace

Acerca de Esri

  • Quiénes somos
  • Empleo
  • Blog interno
  • Conferencia de usuarios
  • Cumbre de desarrolladores
Esri
© Copyright 2016 Environmental Systems Research Institute, Inc. | Privacidad | Legal