ArcGIS Desktop

  • Documentación
  • Soporte

  • My Profile
  • Ayuda
  • Sign Out
ArcGIS Desktop

ArcGIS Online

La plataforma de representación cartográfica para tu organización

ArcGIS Desktop

Un completo SIG profesional

ArcGIS Enterprise

SIG en tu empresa

ArcGIS for Developers

Herramientas para crear aplicaciones basadas en la ubicación

ArcGIS Solutions

Plantillas de aplicaciones y mapas gratuitas para tu sector

ArcGIS Marketplace

Obtén aplicaciones y datos para tu organización.

  • Documentación
  • Soporte
Esri
  • Iniciar sesión
user
  • Mi perfil
  • Cerrar sesión

ArcMap

  • Inicio
  • Introducción
  • Cartografiar
  • Analizar
  • Administrar datos
  • Herramientas
  • Extensiones

Visualizing local polynomial interpolation

Disponible con una licencia de Geostatistical Analyst.

  • Local polynomial interpolation

In Analyzing the surface properties of nearby locations, interpolation that depends on distance was presented. There are other solutions for predicting the values for unmeasured locations. Another proposed site for the observation area is on the face of a gently sloping hill. The face of the hill is a sloping plane. However, the locations of the samples are in slight depressions or on small mounds (local variation). Using the local neighbors to predict a location may over- or underestimate the prediction because of the influence of depressions and mounds. Further, you might pick up the local variation and may not capture the overall sloping plane (referred to as the trend). The ability to identify and model local structures and surface trends can increase the accuracy of your predicted surface.

Local polynomial interpolation

What happens if the area you are interested in slopes, levels off, and slopes again? Asking you to fit a flat plane through this study site would give poor predictions for the unmeasured values. However, if you are permitted to fit many smaller overlapping planes, then use the center of each plane as the prediction for each location in the study area, the resulting surface will be more flexible and perhaps more accurate. This is the conceptual basis for local polynomial interpolation.

Local Polynomial interpolation

Learn how local polynomial interpolation works

ArcGIS Desktop

  • Inicio
  • Documentación
  • Soporte

Plataforma ArcGIS

  • ArcGIS Online
  • ArcGIS Desktop
  • ArcGIS Enterprise
  • ArcGIS for Developers
  • ArcGIS Solutions
  • ArcGIS Marketplace

Acerca de Esri

  • Quiénes somos
  • Empleo
  • Blog interno
  • Conferencia de usuarios
  • Cumbre de desarrolladores
Esri
Díganos su opinión.
© Copyright 2016 Environmental Systems Research Institute, Inc. | Privacidad | Legal