ArcGIS Desktop

  • ArcGIS Pro
  • ArcMap

  • My Profile
  • Ayuda
  • Sign Out
ArcGIS Desktop

ArcGIS Online

La plataforma de representación cartográfica para tu organización

ArcGIS Desktop

Un completo SIG profesional

ArcGIS Enterprise

SIG en tu empresa

ArcGIS for Developers

Herramientas para crear aplicaciones basadas en la ubicación

ArcGIS Solutions

Plantillas de aplicaciones y mapas gratuitas para tu sector

ArcGIS Marketplace

Obtén aplicaciones y datos para tu organización.

  • Documentación
  • Soporte
Esri
  • Iniciar sesión
user
  • Mi perfil
  • Cerrar sesión

ArcMap

  • Inicio
  • Introducción
  • Cartografiar
  • Analizar
  • Administrar datos
  • Herramientas
  • Extensiones

Introduction to the ArcGIS Geostatistical Analyst Tutorial

Disponible con una licencia de Geostatistical Analyst.

  • Tutorial scenario

With ArcGIS Geostatistical Analyst, you can easily create a continuous surface, or map, from measured sample points stored in a point feature layer or raster layer or by using polygon centroids. The sample points can be measurements such as elevation; depth to the water table; or levels of pollution, as is the case in this tutorial. When used in conjunction with ArcMap, Geostatistical Analyst provides a comprehensive set of tools for creating surfaces that can be used to visualize, analyze, and understand spatial phenomena.

Tutorial scenario

The U.S. Environmental Protection Agency is responsible for monitoring atmospheric ozone concentration in California. Ozone concentration is measured at monitoring stations throughout the state. The locations of the stations are shown here. The concentration levels of ozone are known for all the stations, but the ozone values for other (unmonitored) locations in California are also of interest. However, due to cost and practicality, monitoring stations cannot be placed everywhere. Geostatistical Analyst provides tools that make optimal predictions possible by examining the relationships between all the sample points and producing a continuous surface of ozone concentration, standard errors (uncertainty) of predictions, and probabilities that critical values are exceeded.

Ozone concentration is measured at monitoring stations throughout the state.

The data required to complete the exercises is included on the tutorial data DVD. The tutorial data is also available as a download from the Customer Care website. (You may need to contact the Primary Maintenance Contact at your organization to assist with the download.) When you run the wizard to install this data, check to install the Geostatistical Analyst data (the default installation path is C:\ArcGIS\ArcTutor\Geostatistical Analyst). The following datasets (which are contained in a geodatabase called ca_ozone.gdb) will be used in the tutorial:

Dataset Description

ca_outline

Outline of California

O3_Sep06_3pm

Ozone point sample values (ppm)

ca_cities

Major California cities

ca_hillshade

A hillshade map of California

The ozone dataset (O3_Sep06_3pm) was provided courtesy of the California Air Resources Board and represents the concentration of ozone measured on September 6, 2007 between 3:00 and 4:00 p.m. in parts per million (ppm). The original data has been modified for the purpose of the tutorial and should not be considered accurate data.

From the ozone point samples (measurements), you will produce two continuous surfaces (maps) predicting the values of ozone concentration for every location in the state of California. The first map that you create will simply use all the default options to introduce you to the process of creating a surface from your sample points. The second map that you produce will allow you to incorporate more of the spatial relationships that are discovered among the points. When creating this second map, you will use the exploratory spatial data analysis (ESDA) tools to examine your data. You will also be introduced to some of the geostatistical options that you can use to create a surface, such as removing trends and modeling spatial autocorrelation. By using the ESDA tools and working with the geostatistical parameters, you will be able to create a more accurate surface. Many times, it is not the actual values of some critical health risk that are of concern but rather whether the values are above some toxic level. If this is the case, immediate action must be taken. The third surface you create will assess the probability that a critical ozone threshold value has been exceeded. For this tutorial, the critical threshold will be if the value of ozone goes above 0.09 ppm (California State's ambient air quality standard for hourly measurements); then the location should be closely monitored. You will use Geostatistical Analyst to predict the probability that ozone values across California complied with this standard on September 6, 2007 between 3:00 and 4:00 p.m.

This tutorial is divided into individual tasks that are designed to let you explore the capabilities of Geostatistical Analyst at your own pace.

  • Exercise 1 takes you through accessing Geostatistical Analyst and the process of creating a surface of ozone concentration using default parameter values to introduce you to the steps involved in creating an interpolation model.
  • Exercise 2 guides you through the process of exploring your data before you create the surface to spot outliers and recognize trends.
  • Exercise 3 creates a second surface that incorporates more of the spatial relationships discovered in exercise 2 and improves on the surface you created in exercise 1. This exercise also introduces you to some of the basic concepts of geostatistics.
  • Exercise 4 shows you how to compare the results of the two surfaces that you created in exercises 1 and 3 and how to decide which surface provides the better predictions of the unknown values.
  • Exercise 5 takes you through the process of mapping the probability that ozone exceeded a critical threshold, creating a third surface.

You will need a few hours of focused time to complete the tutorial. However, you can also perform the exercises one at a time if you want. It is recommended that you save your results after each exercise.

Temas relacionados

  • What is geostatistics?
  • The geostatistical workflow
  • What is the ArcGIS Geostatistical Analyst extension?

ArcGIS Desktop

  • Inicio
  • Documentación
  • Soporte

Plataforma ArcGIS

  • ArcGIS Online
  • ArcGIS Desktop
  • ArcGIS Enterprise
  • ArcGIS for Developers
  • ArcGIS Solutions
  • ArcGIS Marketplace

Acerca de Esri

  • Quiénes somos
  • Empleo
  • Blog de Esri
  • Conferencia de usuarios
  • Cumbre de desarrolladores
Esri
Díganos su opinión.
Copyright © 2019 Esri. | Privacidad | Legal