ArcGIS Desktop

  • ArcGIS Pro
  • ArcMap

  • My Profile
  • Ayuda
  • Sign Out
ArcGIS Desktop

ArcGIS Online

La plataforma de representación cartográfica para tu organización

ArcGIS Desktop

Un completo SIG profesional

ArcGIS Enterprise

SIG en tu empresa

ArcGIS for Developers

Herramientas para crear aplicaciones basadas en la ubicación

ArcGIS Solutions

Plantillas de aplicaciones y mapas gratuitas para tu sector

ArcGIS Marketplace

Obtén aplicaciones y datos para tu organización.

  • Documentación
  • Soporte
Esri
  • Iniciar sesión
user
  • Mi perfil
  • Cerrar sesión

ArcMap

  • Inicio
  • Introducción
  • Cartografiar
  • Analizar
  • Administrar datos
  • Herramientas
  • Extensiones

Preparar clasificador de clúster ISO

Disponible con una licencia de Spatial Analyst.

  • Resumen
  • Uso
  • Sintaxis
  • Muestra de código
  • Entornos
  • Información sobre licencias

Resumen

Genera un archivo de definición de clasificador de Esri (.ecd) utilizando la definición de clasificación de Clúster ISO.

Esta herramienta realiza una clasificación no supervisada.

Uso

  • Se acepta como entrada cualquier ráster compatible con Esri, incluidos productos de ráster, rásteres segmentados, mosaicos, servicios de imágenes o datasets ráster genéricos. Los rásteres segmentados deben tener 8 bits y 3 bandas.

  • El parámetro Atributos de segmento solo está habilitado si una de las entradas de capa ráster es una imagen segmentada.

Sintaxis

TrainIsoClusterClassifier(in_raster, max_classes, out_classifier_definition, {in_additional_raster}, {max_iterations}, {min_samples_per_cluster}, {skip_factor}, {used_attributes}, {max_merge_per_iter}, {max_merge_distance})
ParámetroExplicaciónTipo de datos
in_raster

El dataset ráster a clasificar.

Raster Layer; Mosaic Layer; Image Service; String
max_classes

Número máximo de clases deseadas para agrupar píxeles o segmentos. Se debe definir de modo que sea mayor que el número de clases de la leyenda.

Puede que obtenga menos clases que las que especificó para este parámetro. Si necesita más, aumente este valor y agregue clases una vez que finalice el proceso de formación.

Long
out_classifier_definition

El archivo JSON de salida que contiene información de atributos, estadísticas, vectores de hiperplano y otra información requerida por el clasificador. Se crea un archivo .ecd.

File
in_additional_raster
(Opcional)

Incorpore datasets ráster secundarios, como una imagen multiespectral o un DEM, para generar atributos y otra información necesaria para la clasificación. Este parámetro es opcional.

Raster Layer; Mosaic Layer; Image Service; String
max_iterations
(Opcional)

Número máximo de iteraciones para ejecutar el proceso de clustering.

El rango recomendado está entre 10 y 20 iteraciones. Al aumentar este valor, el tiempo de procesamiento aumentará linealmente.

Long
min_samples_per_cluster
(Opcional)

Número mínimo de píxeles o segmentos en un cluster o clase válidos.

Se ha demostrado que el valor predeterminado de 20 es efectivo a la hora de crear clases significativas desde el punto de vista estadístico. Este número se puede aumentar para obtener clases más resistentes, pero ello puede limitar el número total de clases que se crean.

Long
skip_factor
(Opcional)

Número de píxeles a ignorar para una entrada de imagen de píxeles. Si una imagen segmentada es una entrada, especifique el número de segmentos a ignorar.

Long
used_attributes
[used_attributes;used_attributes,...]
(Opcional)

Especifica los atributos a incluir en la tabla de atributos asociada con el ráster de salida.

  • COLOR —Los valores de color RGB se derivan del ráster de entrada segmento por segmento.
  • MEAN —El número digital (DN) medio, derivado de la imagen de píxeles opcional, por segmento.
  • STD —La desviación estándar, derivada de la imagen de píxeles opcional, por segmento.
  • COUNT —El número de píxeles que forman el segmento, por segmento.
  • COMPACTNESS —El grado de compactibilidad o circularidad de un segmento, por segmento. Los valores van de 0 a 1, donde 1 corresponde a un círculo.
  • RECTANGULARITY —El grado de rectangularidad del segmento, por segmento. Los valores van de 0 a 1, donde 1 corresponde a un rectángulo.

Este parámetro solo está habilitado si la propiedad clave Segmentado se establece en verdadera en el ráster de entrada. Si la única entrada en la herramienta es una imagen segmentada, los atributos predeterminados son COLOR, COUNT, COMPACTNESS y RECTANGULARITY. Si se incluye un in_additional_raster como entrada junto a la imagen segmentada, también están disponibles los atributos MEAN y STD.

String
max_merge_per_iter
(Opcional)

El número máximo de fusiones de clúster por iteración. Si se aumenta la cantidad de fusiones, se reducirá la cantidad de clases que se crean. Un valor más bajo generará más clases.

Long
max_merge_distance
(Opcional)

La distancia máxima entre centros de clúster en el espacio de entidades. Si se aumenta la distancia se podrán fusionar más clústers y se obtendrán menos clases. Un valor más bajo generará más clases. Los valores de 0 a 5 tienden a dar los mejores resultados.

Double

Muestra de código

Ejemplo 1 de TrainIsoClusterClassifier (ventana de Python)

En el siguiente script de la ventana de Python se utiliza un clasificador de clúster ISO para crear un archivo de definición de clasificación de Esri no supervisado con un máximo de diez clases.

import arcpy
from arcpy.sa import *

TrainIsoClusterClassifier("c:/test/moncton_seg.tif", "10", 
                "c:/output/moncton_sig_iso.ecd","c:/test/moncton.tif", 
                "5", "10", "2", "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY")
Ejemplo 2 de TrainIsoClusterClassifier (script independiente)

En este ejemplo de script se utiliza un clasificador de clúster ISO para crear un archivo de definición de clasificación de Esri no supervisado con un máximo de diez clases.

# Import system modules
import arcpy
from arcpy.sa import *


# Set local variables
inSegRaster = "c:/test/moncton_seg.tif"
maxNumClasses = "10"
out_definition = "c:/output/moncton_sig_iso.ecd"
in_additional_raster = "moncton.tif"
maxIteration = "20"
minNumSamples = "10"
skipFactor = "5"
attributes = "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY"

# Check out the ArcGIS Spatial Analyst extension license
arcpy.CheckOutExtension("Spatial")

# Execute 
TrainIsoClusterClassifier(inSegRaster, maxNumClasses, out_definition,
                          in_additional_raster, maxIteration, 
                          minNumSamples, skipFactor, attributes)

Entornos

  • Espacio de trabajo actual
  • Extensión
  • Transformaciones geográficas
  • Sistema de coordenadas de salida
  • Factor de procesamiento en paralelo
  • Espacio de trabajo temporal
  • Alinear ráster

Información sobre licencias

  • Basic: Requiere Spatial Analyst
  • Standard: Requiere Spatial Analyst
  • Advanced: Requiere Spatial Analyst

Temas relacionados

  • Una vista general del conjunto de herramientas Segmentación y clasificación
  • ¿Qué es la clasificación de imagen?

ArcGIS Desktop

  • Inicio
  • Documentación
  • Soporte

Plataforma ArcGIS

  • ArcGIS Online
  • ArcGIS Desktop
  • ArcGIS Enterprise
  • ArcGIS for Developers
  • ArcGIS Solutions
  • ArcGIS Marketplace

Acerca de Esri

  • Quiénes somos
  • Empleo
  • Blog de Esri
  • Conferencia de usuarios
  • Cumbre de desarrolladores
Esri
Díganos su opinión.
Copyright © 2019 Esri. | Privacidad | Legal