ArcGIS Desktop

  • ArcGIS Pro
  • ArcMap

  • My Profile
  • Ayuda
  • Sign Out
ArcGIS Desktop

ArcGIS Online

La plataforma de representación cartográfica para tu organización

ArcGIS Desktop

Un completo SIG profesional

ArcGIS Enterprise

SIG en tu empresa

ArcGIS for Developers

Herramientas para crear aplicaciones basadas en la ubicación

ArcGIS Solutions

Plantillas de aplicaciones y mapas gratuitas para tu sector

ArcGIS Marketplace

Obtén aplicaciones y datos para tu organización.

  • Documentación
  • Soporte
Esri
  • Iniciar sesión
user
  • Mi perfil
  • Cerrar sesión

ArcMap

  • Inicio
  • Introducción
  • Cartografiar
  • Analizar
  • Administrar datos
  • Herramientas
  • Extensiones

Preparar clasificador de máxima verosimilitud

Disponible con una licencia de Spatial Analyst.

  • Resumen
  • Uso
  • Sintaxis
  • Muestra de código
  • Entornos
  • Información sobre licencias

Resumen

Genera un archivo de definición de clasificador de Esri (.ecd) utilizando la definición de clasificación del Clasificador de máxima verosimilitud (MLC).

Uso

  • Para finalizar el proceso de clasificación de máxima verosimilitud, utilice el mismo ráster de entrada y el archivo .ecd de salida de esta herramienta con la herramienta Clasificar ráster.

  • El ráster de entrada puede ser cualquier ráster compatible con Esri, con cualquier profundidad de bits válida.

  • Para crear un dataset ráster segmentado, utilice la herramienta Segmentación (desplazamiento medio).

  • Para crear el archivo de muestra de entrenamiento, utilice el Administrador de muestras de entrenamiento de la barra de herramientas Clasificación de imagen. Para obtener información sobre cómo utilizar la barra de herramientas Clasificación de imagen, consulte ¿Qué es la clasificación de imagen?

  • El Archivo de definición de clasificador de salida contiene estadísticas de atributo adecuadas para la herramienta Clasificación de máxima verosimilitud.

  • El parámetro Atributos de segmento solo está habilitado si una de las entradas de capa ráster es una imagen segmentada.

Sintaxis

TrainMaximumLikelihoodClassifier(in_raster, in_training_features, out_classifier_definition, {in_additional_raster}, {used_attributes})
ParámetroExplicaciónTipo de datos
in_raster

El dataset ráster a clasificar.

Raster Layer; Mosaic Layer; Image Service; String
in_training_features

El archivo de muestra de entrenamiento o la capa que delinea los sitios de formación.

Estos pueden ser shapefiles o clases de entidad que contengan las muestras de entrenamiento. Los siguientes nombres de campo son obligatorios en el archivo de muestra de entrenamiento:

  • classname: el campo de texto que indica el nombre de la categoría de clase.
  • classvalue: el campo de tipo entero largo que contiene el valor entero para cada categoría de clase.

Feature Layer; Raster Catalog Layer
out_classifier_definition

El archivo JSON de salida que contiene información de atributos, estadísticas, vectores de hiperplano y otra información requerida por el clasificador. Se crea un archivo .ecd.

File
in_additional_raster
(Opcional)

Opcionalmente incorporar datasets ráster auxiliares como, por ejemplo, imagen segmentada o DEM.

Raster Layer; Mosaic Layer; Image Service; String
used_attributes
[used_attributes,...]
(Opcional)

Especifica los atributos a incluir en la tabla de atributos asociada con el ráster de salida.

  • COLOR —Los valores de color RGB se derivan del ráster de entrada segmento por segmento.
  • MEAN —El número digital (DN) medio, derivado de la imagen de píxeles opcional, por segmento.
  • STD —La desviación estándar, derivada de la imagen de píxeles opcional, por segmento.
  • COUNT —El número de píxeles que forman el segmento, por segmento.
  • COMPACTNESS —El grado de compactibilidad o circularidad de un segmento, por segmento. Los valores van de 0 a 1, donde 1 corresponde a un círculo.
  • RECTANGULARITY —El grado de rectangularidad del segmento, por segmento. Los valores van de 0 a 1, donde 1 corresponde a un rectángulo.

Este parámetro solo está habilitado si la propiedad clave Segmentado se establece en verdadera en el ráster de entrada. Si la única entrada en la herramienta es una imagen segmentada, los atributos predeterminados son COLOR, COUNT, COMPACTNESS y RECTANGULARITY. Si se incluye un in_additional_raster como entrada junto a la imagen segmentada, también están disponibles los atributos MEAN y STD.

String

Muestra de código

Ejemplo 1 de TrainMaximumLikelihoodClassifier (ventana de Python)

El siguiente script de la ventana de Python muestra cómo utilizar esta herramienta.

import arcpy
from arcpy.sa import *

TrainMaximumLikelihoodClassifier(
    "c:/test/moncton_seg.tif", "c:/test/train.gdb/train_features", 
    "c:/output/moncton_sig.ecd", "c:/test/moncton.tif", 
    "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY")
Ejemplo 2 de TrainMaximumLikelihoodClassifier (script independiente)

Este ejemplo muestra cómo preparar un clasificador de verosimilitud máxima.

# Import system modules
import arcpy
from arcpy.sa import *


# Set local variables
inSegRaster = "c:/test/moncton_seg.tif"
train_features = "c:/test/train.gdb/train_features"
out_definition = "c:/output/moncton_sig.ecd"
in_additional_raster = "c:/moncton.tif"
attributes = "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY"

# Check out the ArcGIS Spatial Analyst extension license
arcpy.CheckOutExtension("Spatial")

# Execute 
TrainMaximumLikelihoodClassifier(inSegRaster, train_features, out_definition, 
                                 in_additional_raster, attributes)

Entornos

  • Espacio de trabajo actual
  • Extensión
  • Transformaciones geográficas
  • Sistema de coordenadas de salida
  • Espacio de trabajo temporal
  • Alinear ráster

Información sobre licencias

  • Basic: Requiere Spatial Analyst
  • Standard: Requiere Spatial Analyst
  • Advanced: Requiere Spatial Analyst

Temas relacionados

  • Una vista general del conjunto de herramientas Segmentación y clasificación
  • ¿Qué es la clasificación de imagen?

ArcGIS Desktop

  • Inicio
  • Documentación
  • Soporte

Plataforma ArcGIS

  • ArcGIS Online
  • ArcGIS Desktop
  • ArcGIS Enterprise
  • ArcGIS for Developers
  • ArcGIS Solutions
  • ArcGIS Marketplace

Acerca de Esri

  • Quiénes somos
  • Empleo
  • Blog de Esri
  • Conferencia de usuarios
  • Cumbre de desarrolladores
Esri
Díganos su opinión.
Copyright © 2019 Esri. | Privacidad | Legal