Disponible con una licencia de Spatial Analyst.
Resumen
Defines the Ordinary Kriging model. The available model types are Spherical, Circular, Exponential, Gaussian, and Linear.
Debate
The KrigingModelOrdinary object is used in the Kriging tool.
Ordinary Kriging assumes the model:
Z(s) = µ + ε(s)
The default value for lagSize is set to the default output cell size.
For majorRange, partialSill, and nugget, a default value will be calculated internally if nothing is specified.
Sintaxis
KrigingModelOrdinary ({semivariogramType}, {lagSize}, {majorRange}, {partialSill}, {nugget})
Parámetro | Explicación | Tipo de datos |
semivariogramType | Semivariogram model to be used.
(El valor predeterminado es SPHERICAL) | String |
lagSize | The lag size to be used in model creation. The default is the output raster cell size. | Double |
majorRange | Represents a distance beyond which there is little or no correlation. | Double |
partialSill | The difference between the nugget and the sill. | Double |
nugget | Represents the error and variation at spatial scales too fine to detect. The nugget effect is seen as a discontinuity at the origin. | Double |
Propiedades
Propiedad | Explicación | Tipo de datos |
semivariogramType (Lectura y escritura) | Semivariogram model to be used.
| String |
lagSize (Lectura y escritura) | The lag size to be used in model creation. The default is the output raster cell size. | Double |
majorRange (Lectura y escritura) | Represents a distance beyond which there is little or no correlation. | Double |
partialSill (Lectura y escritura) | The difference between the nugget and the sill. | Double |
nugget (Lectura y escritura) | Represents the error and variation at spatial scales too fine to detect. The nugget effect is seen as a discontinuity at the origin. | Double |
Muestra de código
KrigingModelOrdinary example 1 (Python window)
Demonstrates how to create a KrigingModelOrdinary object and use it in the Kriging tool within the Python window.
import arcpy
from arcpy import env
from arcpy.sa import *
env.workspace = "C:/sapyexamples/data"
kModelOrdinary = KrigingModelOrdinary("CIRCULAR", 70000, 250000, 180000, 34000)
outKrigingOrd1 = Kriging("ca_ozone_pts.shp", "ELEVATION", kModelOrdinary, 2000, RadiusVariable(),"")
outKrigingOrd1.save("C:/sapyexamples/output/kordinary1")
KrigingModelOrdinary example 2 (stand-alone script)
Calculates a Kriging surface using the KrigingModelOrdinary object.
# Name: KrigingModelOrdinary_Ex_02.py
# Description: Uses the KrigingModelOrdinary object to execute the Kriging tool.
# Requirements: Spatial Analyst Extension
# Import system modules
import arcpy
from arcpy import env
from arcpy.sa import *
# Set environment settings
env.workspace = "C:/sapyexamples/data"
# Set local variables
inPointFeature = "ca_ozone_pts.shp"
outVarRaster = "C:/sapyexamples/output/ovariance2"
# Create KrigingModelOrdinary Object
lagSize = 70000
majorRange = 250000
partialSill = 180000
nugget = 34000
kModelOrdinary = KrigingModelOrdinary("CIRCULAR", lagSize, majorRange,
partialSill, nugget)
# Check out the ArcGIS Spatial Analyst extension license
arcpy.CheckOutExtension("Spatial")
# Execute Kriging
outKrigingOrd2 = Kriging(inPointFeature, "ELEVATION", kModelOrdinary, 2000,
RadiusFixed(200000, 10), outVarRaster)
# Save the output
outKrigingOrd2.save("C:/sapyexamples/output/kordinary2")