ArcGIS Desktop

  • ArcGIS Pro
  • ArcMap

  • My Profile
  • Ayuda
  • Sign Out
ArcGIS Desktop

ArcGIS Online

La plataforma de representación cartográfica para tu organización

ArcGIS Desktop

Un completo SIG profesional

ArcGIS Enterprise

SIG en tu empresa

ArcGIS Developers

Herramientas para crear aplicaciones basadas en la ubicación

ArcGIS Solutions

Plantillas de aplicaciones y mapas gratuitas para tu sector

ArcGIS Marketplace

Obtén aplicaciones y datos para tu organización.

  • Documentación
  • Soporte
Esri
  • Iniciar sesión
user
  • Mi perfil
  • Cerrar sesión

ArcMap

  • Inicio
  • Introducción
  • Cartografiar
  • Analizar
  • Administrar datos
  • Herramientas
  • Extensiones

Understanding transformations and trends

Disponible con una licencia de Geostatistical Analyst.

  • Transformations and trends for the primary variable
  • Transformations and trends for the secondary variable (cokriging)
  • Definitions and abbreviations

Kriging as a predictor does not require that your data have a normal distribution. However, as you see in Understanding different kriging models, normality is necessary to obtain quantile and probability maps for ordinary, simple, and universal kriging. When considering only predictors that are formed from weighted averages, kriging is the best unbiased predictor whether or not your data is normally distributed. However, if the data is normally distributed, kriging is the best predictor among all unbiased predictors, not only those that are weighted averages.

Kriging also relies on the assumption that all the random errors are second-order stationarity, which is an assumption that the random errors have zero mean and the covariance between any two random errors depends only on the distance and direction that separates them, not their exact locations.

Transformations and trend removal can help justify assumptions of normality and stationarity. Prediction using ordinary, simple, and universal kriging for general Box-Cox, arcsine, and log transformations is called trans-Gaussian kriging. Log transformation is a special case of Box-Cox transformation, but it has special prediction properties and is known as lognormal kriging.

Transformations and trends for the primary variable

In the table below, the transformations and trend options available for each kriging method are shown for the primary variable. The table also shows whether transformation or trend removal is performed first when both are selected.

Kriging typeBALNSTTrend

Ordinary

Yes (1st if TR)

No

TR (2nd if BAL)

Simple

Yes

Yes

No

Universal

Yes (1st if T)

No

T (2nd if BAL)

Indicator

No

No

No

Probability*

No

No

No

Disjunctive

Yes (1st if TR)

Yes (2nd if TR)

TR (1st if NST, 2nd if BAL)

Empirical Bayesian

No

Yes

T (simultaneous with NST)

Empirical Bayesian 3D

No

Yes

T (simultaneous with NST), Z

EBK Regression Prediction

No

Yes

No

Primary variable transformations and trend options

*For probability kriging, the primary variable is composed of indicators of the original variable; the original variable is then considered a secondary variable for cokriging.

Transformations and trends for the secondary variable (cokriging)

In the table below, the transformation and trend options available for each kriging method are shown for the secondary variable. The table also shows whether transformation or trend removal is performed first when both are selected.

Kriging typeBALNSTTrend

Ordinary

Yes (1st if TR)

No

TR (2nd if BAL)

Simple

Yes

Yes

No

Universal

Yes (1st if T)

No

T (2nd if BAL)

Indicator

No

No

No

Probability

Yes (1st if TR)

Yes

TR (2nd if BAL)

Disjunctive

Yes (1st if TR)

Yes (2nd if TR)

TR (1st if NST, 2nd if BAL)

Secondary variable transformations and trend options

Definitions and abbreviations

See the following for the meanings of the definitions and abbreviations used in the preceding tables.

Definitions

  • Primary variable—Variable to be predicted when using kriging or cokriging
  • Secondary variables—Covariables (not predicted) when using cokriging
  • Trend—Fixed effects composed of spatial coordinates used in a linear model

Abbreviations

  • BAL—Box-Cox, arcsine, and log transformations
  • NST—Normal score transformation
  • SV—Variable (covariables for cokriging)
  • T—(internal trend)
  • TR—Removal (external trend)
  • Z—Trend removal in vertical direction only

ArcGIS Desktop

  • Inicio
  • Documentación
  • Soporte

ArcGIS

  • ArcGIS Online
  • ArcGIS Desktop
  • ArcGIS Enterprise
  • ArcGIS
  • ArcGIS Developer
  • ArcGIS Solutions
  • ArcGIS Marketplace

Acerca de Esri

  • Quiénes somos
  • Empleo
  • Blog de Esri
  • Conferencia de usuarios
  • Cumbre de desarrolladores
Esri
Díganos su opinión.
Copyright © 2021 Esri. | Privacidad | Legal