ArcGIS Desktop

  • ArcGIS Pro
  • ArcMap

  • My Profile
  • Aide
  • Sign Out
ArcGIS Desktop

ArcGIS Online

La plateforme cartographique de votre organisation

ArcGIS Desktop

Un SIG professionnel complet

ArcGIS Enterprise

SIG dans votre entreprise

ArcGIS Developers

Outils de création d'applications de localisation

ArcGIS Solutions

Modèles d'applications et de cartes gratuits pour votre secteur d'activité

ArcGIS Marketplace

Téléchargez des applications et des données pour votre organisation.

  • Documentation
  • Support
Esri
  • Se connecter
user
  • Mon profil
  • Déconnexion

ArcMap

  • Accueil
  • Commencer
  • Carte
  • Analyser
  • Gérer les données
  • Outils
  • Extensions

Components of geostatistical models

Disponible avec une licence Geostatistical Analyst.

  • Calculate the empirical semivariogram
  • Fit a model
  • Create the matrices
  • Make a prediction

Geostatistical (kriging) models comprise several components: examining the data (distribution, trends, directional components, outliers), calculating the empirical semivariogram or covariance values, fitting a model to the empirical values, generating the matrices of kriging equations, and solving them to obtain a predicted value and the error (uncertainty) associated with it for each location in the output surface.

Calculate the empirical semivariogram

Kriging, like most interpolation techniques, is built on the basic principle that things that are close to one another are more alike than those farther away from each other (quantified here as spatial autocorrelation). The empirical semivariogram is a means to explore this relationship. Pairs that are close in distance should have a smaller difference than those farther away from one another. The extent to which this assumption is true can be examined in the empirical semivariogram.

Geostatistical Analyst empirical semivariogram

Fit a model

Fitting is done by defining a model that provides the best fit through the points. That is, you need to find a line such that the weighted squared difference between each point and the line is as small as possible. This is referred to as the weighted least-squares fit. This model quantifies the spatial autocorrelation in your data. The image below shows the empirical semivariances (red dots) and the model that best represents the points (blue line):

Geostatistical Analyst variogram

Create the matrices

The equations for kriging are contained in matrices and vectors that depend on the spatial autocorrelation among the measured sample locations and prediction location. The autocorrelation values come from the semivariogram model. The matrices and vectors determine the kriging weights that are assigned to each measured value in the searching neighborhood.

Make a prediction

From the kriging weights for the measured values, the software calculates a prediction for the location with the unknown value.

Geostatistical Analyst prediction surface

ArcGIS Desktop

  • Accueil
  • Documentation
  • Support

ArcGIS

  • ArcGIS Online
  • ArcGIS Desktop
  • ArcGIS Enterprise
  • ArcGIS
  • ArcGIS Developer
  • ArcGIS Solutions
  • ArcGIS Marketplace

A propos d'Esri

  • A propos de la société
  • Carrières
  • Blog d’Esri
  • Conférence des utilisateurs
  • Sommet des développeurs
Esri
Donnez-nous votre avis.
Copyright © 2021 Esri. | Confidentialité | Légal