ArcGIS Desktop

  • ArcGIS Pro
  • ArcMap

  • My Profile
  • Aide
  • Sign Out
ArcGIS Desktop

ArcGIS Online

La plateforme cartographique de votre organisation

ArcGIS Desktop

Un SIG professionnel complet

ArcGIS Enterprise

SIG dans votre entreprise

ArcGIS Developers

Outils de création d'applications de localisation

ArcGIS Solutions

Modèles d'applications et de cartes gratuits pour votre secteur d'activité

ArcGIS Marketplace

Téléchargez des applications et des données pour votre organisation.

  • Documentation
  • Support
Esri
  • Se connecter
user
  • Mon profil
  • Déconnexion

ArcMap

  • Accueil
  • Commencer
  • Carte
  • Analyser
  • Gérer les données
  • Outils
  • Extensions

Understanding simple kriging

Disponible avec une licence Geostatistical Analyst.

Simple kriging assumes this model:

Z(s) = µ + ε(s)
  • where µ is a known constant

For example, in the following figure, which uses the same data as for ordinary kriging and universal kriging concepts, the observed data is given by the solid circles:

Ordinary kriging with one spatial dimension
Example of ordinary kriging with one spatial dimension

The known constant, represented by the dotted line, is µ. This can be compared to ordinary kriging. For simple kriging, because you assume that you know µ exactly, you also know ε(s) exactly at the data locations. For ordinary kriging, you estimated µ, so you also estimated ε(s). If you know ε(s), you can do a better job of estimating the autocorrelation than if you are estimating ε(s). The assumption that you will know the exact mean µ is often unrealistic. However, sometimes it makes sense to assume that a physically based model gives a known trend. Then you can take the difference between that model and the observations, called residuals, and use simple kriging on the residuals, assuming the trend in the residuals is known to be zero.

Simple kriging can use either semivariograms or covariances (which are the mathematical forms you use to express autocorrelation), use transformations, and allow for measurement error.

Rubriques connexes

  • ...to create a prediction map
  • ...to create a quantile map
  • ...to create a probability map
  • ...to create a prediction standard error map
  • Using simple kriging with a data transformation to create a prediction map
  • Using simple kriging with a data transformation and declustering to create a prediction map

ArcGIS Desktop

  • Accueil
  • Documentation
  • Support

ArcGIS

  • ArcGIS Online
  • ArcGIS Desktop
  • ArcGIS Enterprise
  • ArcGIS
  • ArcGIS Developer
  • ArcGIS Solutions
  • ArcGIS Marketplace

A propos d'Esri

  • A propos de la société
  • Carrières
  • Blog d’Esri
  • Conférence des utilisateurs
  • Sommet des développeurs
Esri
Donnez-nous votre avis.
Copyright © 2021 Esri. | Confidentialité | Légal