ArcGIS Desktop

  • ArcGIS Pro
  • ArcMap

  • My Profile
  • Aide
  • Sign Out
ArcGIS Desktop

ArcGIS Online

La plateforme cartographique de votre organisation

ArcGIS Desktop

Un SIG professionnel complet

ArcGIS Enterprise

SIG dans votre entreprise

ArcGIS Developers

Outils de création d'applications de localisation

ArcGIS Solutions

Modèles d'applications et de cartes gratuits pour votre secteur d'activité

ArcGIS Marketplace

Téléchargez des applications et des données pour votre organisation.

  • Documentation
  • Support
Esri
  • Se connecter
user
  • Mon profil
  • Déconnexion

ArcMap

  • Accueil
  • Commencer
  • Carte
  • Analyser
  • Gérer les données
  • Outils
  • Extensions

Préparer le classificateur de machines à vecteurs de support

Disponible avec une licence Spatial Analyst.

  • Résumé
  • Utilisation
  • Syntaxe
  • Exemple de code
  • Environnements
  • Informations de licence

Résumé

Génère un fichier de définition de classificateur Esri (.ecd) à l’aide de la définition de classification des machines à vecteurs de support (SVM).

Utilisation

  • Le classificateur de machines à vecteurs de support est une méthode très efficace de classification assistée. Elle est parfaitement adaptée aux rasters segmentés en entrée, mais peut également gérer des images standard. C'est une méthode de classification souvent utilisée par les chercheurs.

  • Pour les entrées d'image standard, l'outil accepte les images multicanaux d'une profondeur des couleurs quelconque et réalise la classification de machines à vecteurs de support par pixel, en fonction du fichier d'entités d'apprentissage en entrée.

  • Pour les rasters segmentés, dont la propriété de clé est définie sur Segmenté, l'outil calcule l'image d'index et les attributs de segments associés à partir du raster segmenté RVB. Les attributs sont calculés pour générer le fichier de définition de classificateur à utiliser dans un outil de classification distinct. Les attributs de chaque segment peuvent être calculés à partir de toute image prise en charge par Esri.

  • Le classificateur de machines à vecteurs de support présente plusieurs avantages par rapport à la méthode de classification de vraisemblance maximale :

    • Le classificateur de machines à vecteurs de support a besoin d'un nombre bien moindre d'échantillons, qui n'ont pas besoin d'être normalement distribués.
    • Il est moins sensible au bruit, aux canaux corrélés et au nombre ou à la taille non équilibrés de sites d'apprentissage au sein de chaque classe.

  • Tout raster pris en charge par Esri est accepté en entrée, y compris les produits raster, les rasters segmentés, les mosaïques, les services d'imagerie ou les jeux de données raster génériques. Les rasters segmentés doivent être des rasters 8 bits à 3 canaux.

  • Pour créer un fichier d'échantillon d'apprentissage, utilisez Gestionnaire d'échantillons d'apprentissage de la barre d'outils Classification d'image. Pour en savoir plus sur l'utilisation de la barre d'outils Classification d'image, reportez-vous à la rubrique Présentation de la classification des images

  • Le paramètre Attributs de segment est activé uniquement si l'une des entrées de la couche raster est une image segmentée.

Syntaxe

TrainSupportVectorMachineClassifier(in_raster, in_training_features, out_classifier_definition, {in_additional_raster}, {max_samples_per_class}, {used_attributes})
ParamètreExplicationType de données
in_raster

Jeu de données raster à classer.

Il est recommandé d'utiliser en entrée un jeu de données raster segmenté de 8 bits, à 3 canaux, dans lequel tous les pixels appartenant à un segment possèdent la même couleur. Vous pouvez également faire appel à un raster segmenté monocanal de 8 bits, en nuances de gris. Si aucun raster segmenté n'est disponible, vous pouvez utiliser n'importe quel jeu de données raster pris en charge par Esri.

Raster Layer; Mosaic Layer; Image Service; String
in_training_features

Fichier d’échantillons d'apprentissage ou couche délimitant vos sites d’apprentissage.

Il peut s’agir de shapefiles ou de classes d’entités qui contiennent vos échantillons d'apprentissage. Les noms de champ suivants sont requis dans le fichier d’échantillons d'apprentissage :

  • classname : champ de texte indiquant le nom de la catégorie de classes.
  • classvalue : champ de type entier long contenant la valeur entière de chaque catégorie de classes.

Feature Layer; Raster Catalog Layer
out_classifier_definition

Fichier JSON en sortie qui contient des informations sur les attributs, des statistiques, des vecteurs hyperplans et d'autres informations pour le classificateur. Un fichier .ecd est créé.

File
in_additional_raster
(Facultatif)

Incorporez des jeux de données raster secondaires, tels qu’une image multispectrale ou un MNT, pour générer les attributs et autres informations requises pour la classification. Ce paramètre est facultatif.

Raster Layer; Mosaic Layer; Image Service; String
max_samples_per_class
(Facultatif)

Nombre maximal d'échantillons à utiliser pour définir chaque classe.

La valeur par défaut 500 est recommandée si les entrées sont des rasters non segmentés. Une valeur inférieure ou égale à zéro signifie que le système utilisera tous les échantillons des sites d’apprentissage pour former le classificateur.

Long
used_attributes
[used_attributes;used_attributes,...]
(Facultatif)

Spécifie les attributs à inclure dans la table attributaire associée au raster en sortie.

  • COLOR —Les valeurs de couleurs RVB découlent du raster en entrée, segment par segment.
  • MEAN —Numéro numérique (DN) moyen dérivé de l'image de pixels facultative, segment par segment.
  • STD —Ecart type dérivé de l'image de pixels facultative, segment par segment.
  • COUNT —Nombre de pixels qui composent le segment, segment par segment.
  • COMPACTNESS —Degré auquel un segment est compact ou circulaire, segment par segment. Les valeurs autorisées sont comprises entre 0 et 1, où 1 correspond à un cercle.
  • RECTANGULARITY —Degré auquel le segment est rectangulaire, segment par segment. Les valeurs autorisées sont comprises entre 0 et 1, où 1 correspond à un rectangle.

Ce paramètre est activé uniquement si la propriété de clé Segmented est vraie (définie sur True) dans le raster en entrée. Si la seule sortie de l’outil est une image segmentée, les attributs par défaut sont COLOR, COUNT, COMPACTNESS et RECTANGULARITY. Si un in_additional_raster est inclus comme entrée avec une image segmentée, les attributs MEAN et STD sont également disponibles.

String

Exemple de code

Exemple 1 d'utilisation de l'outil TrainSupportVectorClassifier (fenêtre Python)

Cet exemple Python utilise le classificateur de machines à vecteurs de support pour classer un raster segmenté.

import arcpy
from arcpy.sa import *

arcpy.gp.TrainSupportVectorMachineClassifier(
    "c:/test/moncton_seg.tif", "c:/test/train.gdb/train_features",
    "c:/output/moncton_sig_SVM.ecd", "c:/test/moncton.tif", "10",
    "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY")
Exemple 2 d'utilisation de l'outil TrainSupportVectorClassifier (script autonome)

Ce script Python utilise le classificateur de machines à vecteurs de support pour classer un raster segmenté.

# Import system modules
import arcpy
from arcpy.sa import *


# Set local variables
inSegRaster = "c:/test/moncton_seg.tif"
train_features = "c:/test/train.gdb/train_features"
out_definition = "c:/output/moncton_sig.ecd"
in_additional_raster = "c:/moncton.tif"
maxNumSamples = "10"
attributes = "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY"

# Check out the ArcGIS Spatial Analyst extension license
arcpy.CheckOutExtension("Spatial")

#Execute
arcpy.gp.TrainSupportVectorMachineClassifier(
    inSegRaster, train_features, out_definition, 
    in_additional_raster, maxNumSamples, attributes)

Environnements

  • Espace de travail courant
  • Étendue
  • Transformations géographiques
  • Système de coordonnées en sortie
  • Facteur de traitement parallèle
  • Espace de travail temporaire
  • Raster de capture

Informations de licence

  • Basic: Requiert Spatial Analyst
  • Standard: Requiert Spatial Analyst
  • Advanced: Requiert Spatial Analyst

Rubriques connexes

  • Vue d'ensemble du jeu d'outils de segmentation et de classification
  • Présentation de la classification des images

ArcGIS Desktop

  • Accueil
  • Documentation
  • Support

ArcGIS

  • ArcGIS Online
  • ArcGIS Desktop
  • ArcGIS Enterprise
  • ArcGIS
  • ArcGIS Developer
  • ArcGIS Solutions
  • ArcGIS Marketplace

A propos d'Esri

  • A propos de la société
  • Carrières
  • Blog d’Esri
  • Conférence des utilisateurs
  • Sommet des développeurs
Esri
Donnez-nous votre avis.
Copyright © 2021 Esri. | Confidentialité | Légal