ArcGIS for Desktop

  • ドキュメント
  • 価格
  • サポート

  • My Profile
  • ヘルプ
  • Sign Out
ArcGIS for Desktop

ArcGIS Online

組織のマッピング プラットフォーム

ArcGIS for Desktop

完全なプロ仕様の GIS

ArcGIS for Server

エンタープライズ GIS

ArcGIS for Developers

位置情報利用アプリの開発ツール

ArcGIS Solutions

各種業界向けの無料のテンプレート マップおよびテンプレート アプリケーション

ArcGIS Marketplace

組織で使えるアプリとデータを取得

  • ドキュメント
  • 価格
  • サポート
Esri
  • サイン イン
user
  • マイ プロフィール
  • サイン アウト

Help

  • ホーム
  • はじめに
  • マップ
  • 解析
  • データ管理
  • ツール
  • その他...

Understanding disjunctive kriging

Geostatistical Analyst のライセンスで利用可能。

Disjunctive kriging assumes the model

f(Z(s)) = µ1 + ε(s),

where µ1 is an unknown constant and f(Z(s)) is an arbitrary function of Z(s). Notice that you can write f(Z(s)) = I(Z(s) > ct), so indicator kriging is a special case of disjunctive kriging. In Geostatistical Analyst, you can predict either the value itself or an indicator with disjunctive kriging.

In Geostatistical Analyst, the functions g(Z(s0)) available are simply Z(s0) itself and I(Z(s0) > ct). In general, disjunctive kriging tries to do more than ordinary kriging. While the rewards may be greater, so are the costs. Disjunctive kriging requires the bivariate normality assumption and approximations to the functions fi(Z(si)); the assumptions are difficult to verify, and the solutions are mathematically and computationally complicated.

Disjunctive kriging can use either semivariograms or covariances (the mathematical forms used to express autocorrelation) and transformations, but it cannot allow for measurement error.

このトピックへのフィードバック

ArcGIS for Desktop

  • ホーム
  • ドキュメント
  • 価格
  • サポート

ArcGIS プラットフォーム

  • ArcGIS Online
  • ArcGIS for Desktop
  • ArcGIS for Server
  • ArcGIS for Developers
  • ArcGIS Solutions
  • ArcGIS Marketplace

Esri について

  • 会社概要
  • 採用情報
  • スタッフ ブログ
  • ユーザ カンファレンス
  • デベロッパ サミット
Esri
© Copyright 2016 Environmental Systems Research Institute, Inc. | プライバシー | リーガル