ArcGIS for Desktop

  • ドキュメント
  • 価格
  • サポート

  • My Profile
  • ヘルプ
  • Sign Out
ArcGIS for Desktop

ArcGIS Online

組織のマッピング プラットフォーム

ArcGIS for Desktop

完全なプロ仕様の GIS

ArcGIS for Server

エンタープライズ GIS

ArcGIS for Developers

位置情報利用アプリの開発ツール

ArcGIS Solutions

各種業界向けの無料のテンプレート マップおよびテンプレート アプリケーション

ArcGIS Marketplace

組織で使えるアプリとデータを取得

  • ドキュメント
  • 価格
  • サポート
Esri
  • サイン イン
user
  • マイ プロフィール
  • サイン アウト

Help

  • ホーム
  • はじめに
  • マップ
  • 解析
  • データ管理
  • ツール
  • その他...

Understanding probability kriging

Geostatistical Analyst のライセンスで利用可能。

Probability kriging assumes the model

I(s) = I(Z(s) > ct) = µ1 + ε1(s)

Z(s) = µ2 + ε2(s),

where µ1 and µ2 are unknown constants and I(s) is a binary variable created by using a threshold indicator, I(Z(s) > ct). Notice that now there are two types of random errors, ε1(s) and ε2(s), so there is autocorrelation for each of them and cross-correlation between them. Probability kriging strives to do the same thing as indicator kriging, but it uses cokriging in an attempt to do a better job.

For example, in the following figure, which uses the same data as that of ordinary, universal, simple, and indicator kriging concepts, notice the datums labeled Z(u=9), which has an indicator variable of I(u) = 0, and Z(s=10), which has an indicator variable of I(s) = 1.

Probability kriging

If you wanted to predict a value halfway between them, at x-coordinate 9.5, using indicator kriging alone would give a prediction near 0.5. However, you can see that Z(s) is just above the threshold, but Z(u) is well below the threshold. Therefore, you have some reason to believe that an indicator prediction at location 9.5 should be less than 0.5. Probability kriging tries to exploit the extra information in the original data in addition to the binary variable. However, it comes with a price. You have to do much more estimation, which includes estimating the autocorrelation for each variable as well as their cross-correlation. Each time you estimate unknown autocorrelation parameters, you introduce more uncertainty, so probability kriging may not be worth the extra effort.

Probability kriging can use either semivariograms or covariances (the mathematical forms used to express autocorrelation), cross-covariances (the mathematical forms used to express cross-correlation), and transformations, but it cannot allow for measurement error.

関連トピック

  • Using probability kriging to create a probability map
このトピックへのフィードバック

ArcGIS for Desktop

  • ホーム
  • ドキュメント
  • 価格
  • サポート

ArcGIS プラットフォーム

  • ArcGIS Online
  • ArcGIS for Desktop
  • ArcGIS for Server
  • ArcGIS for Developers
  • ArcGIS Solutions
  • ArcGIS Marketplace

Esri について

  • 会社概要
  • 採用情報
  • スタッフ ブログ
  • ユーザ カンファレンス
  • デベロッパ サミット
Esri
© Copyright 2016 Environmental Systems Research Institute, Inc. | プライバシー | リーガル