Spatial Analyst のライセンスで利用可能。
概要
リモート センシング画像を使用して、ラベルが付いたベクターまたはラスター データをディープ ラーニング トレーニング データセットに変換します。出力は画像チップのフォルダー、および指定した形式のメタデータ ファイルのフォルダーです。
使用法
このツールは、Google TensorFlow、PyTorch、Microsoft CNTK などのサード パーティ製ディープ ラーニング アプリケーションをサポートするトレーニング データセットを作成します。
ディープ ラーニング クラス トレーニング サンプルは、画像チップと呼ばれる対象のフィーチャまたはクラスを含む小さなサブイメージに基づきます。
既存の分類トレーニング サンプル データや、建物フットプリント レイヤーなどの GIS フィーチャクラス データを使用して、ソース画像からのクラス サンプルを含む画像チップを生成します。多くの場合、画像チップは 256 ピクセル (行) x 256 ピクセル (列) です (トレーニング サンプルのサイズがこれより大きくない場合)。
セルのサイズおよび範囲は、ジオプロセシング環境設定を使用して調整できます。
構文
ExportTrainingDataForDeepLearning(in_raster, out_folder, in_class_data, image_chip_format, {tile_size_x}, {tile_size_y}, {stride_x}, {stride_y}, {output_nofeature_tiles}, {metadata_format}, {start_index}, {class_value_field}, {buffer_radius})
パラメーター | 説明 | データ タイプ |
in_raster | 入力ソース画像。通常は、マルチスペクトル画像です。 入力ソース画像のタイプの例としては、マルチスペクトル衛星、ドローン、航空、または NAIP (National Agriculture Imagery Program) などが挙げられます。 | Raster Dataset; Raster Layer; Mosaic Layer; Image Service; MapServer; Map Server Layer; Internet Tiled Layer |
out_folder | 出力画像チップとメタデータを格納するフォルダーです。 | Folder |
in_class_data | ベクターまたはラスター形式のトレーニング サンプル データ。 ベクター入力は、ArcGIS Desktop の [画像分類] ツールバーで生成されるようなトレーニング サンプル形式に従う必要があります。ラスター入力は、[ラスターの分類 (Classify Raster)] ツールで生成された分類ラスター形式に従う必要があります。 | Feature Class; Feature Layer; Raster Dataset; Raster Layer; Mosaic Layer; Image Service |
image_chip_format | 画像チップ出力のラスター形式を指定します。 PNG および JPEG は、3 バンドまでサポートします。
| String |
tile_size_x (オプション) | 画像チップのサイズ (X ディメンション)。 | Long |
tile_size_y (オプション) | 画像チップのサイズ (Y ディメンション)。 | Long |
stride_x (オプション) | 次の画像チップを作成する際に X 方向に移動する距離。 ストライドがタイル サイズと等しい場合、オーバーラップは発生しません。ストライドがタイル サイズの半分と等しい場合は、50% のオーバーラップが発生します。 | Long |
stride_y (オプション) | 次の画像チップを作成する際に Y 方向に移動する距離。 ストライドがタイル サイズと等しい場合、オーバーラップは発生しません。ストライドがタイル サイズの半分と等しい場合は、50% のオーバーラップが発生します。 | Long |
output_nofeature_tiles (オプション) | トレーニング サンプルをキャプチャしない画像チップをエクスポートするかどうかを指定します。
| Boolean |
metadata_format (オプション) | 出力メタデータ ラベルの形式を指定します。 トレーニング データの出力メタデータ ラベルには、[KITTI] の四角形、[PASCAL VOC] の四角形、[分類タイル] (クラス マップ)、および [RCNN マスク] の 4 つのオプションがあります。入力トレーニング サンプル データが建物レイヤーなどのフィーチャクラス レイヤーまたは標準分類トレーニング サンプル ファイルの場合、KITTI または PASCAL VOC の四角形オプションを使用します。出力メタデータは、最小境界範囲内のトレーニング サンプル データを含む *.txt ファイルまたは *.xml ファイルです。メタデータ ファイルの名前は、入力ソース画像名と一致します。入力トレーニング サンプル データがクラス マップの場合、出力メタデータ形式として [分類タイル] オプションを使用します。
KITTI メタデータ形式では 15 個の列が作成されますが、そのうちツールで使用されるのは 5 つのみです。最初の列はクラス値です。次の 3 つの列はスキップされます。5 ~ 8 番目の列は、4 つの画像座標位置 (それぞれ、上下左右のピクセル) で構成される最小境界範囲を定義します。最小境界範囲には、ディープ ラーニング分類器に使用されるトレーニング チップが含まれます。残りの列は使用されません。 詳細については、「KITTI メタデータ形式 」をご参照ください。 次に、PASCAL VOC オプションの例を示します。
詳細については、「PASCAL Visual Object Classes」をご参照ください。 | String |
start_index (オプション) | 画像チップのシーケンスの開始インデックス。これにより、既存のシーケンスに画像チップを追加することができます。デフォルト値は 0 です。 | Long |
class_value_field (オプション) | クラス値を含むフィールド。フィールドが指定されていない場合、value フィールドまたは classvalue フィールドを検索します。フィーチャにクラス フィールドが含まれていない場合、すべてのレコードが 1 つのクラスに属していると判断します。 | Field |
buffer_radius (オプション) | トレーニング サンプル領域を描画する、各トレーニング サンプルの周囲のバッファーの半径。これを使用して、ポイントから円形ポリゴンのトレーニング サンプルを作成できます。 in_class_data 空間参照の距離単位が使用されます。 | Double |
コードのサンプル
ExportTrainingDataForDeepLearning (ディープ ラーニング用のトレーニング データをエクスポート) の例 1 (Python ウィンドウ)
この例では、ディープ ラーニング用のトレーニング サンプルを作成します。
from arcpy.sa import *
ExportTrainingDataForDeepLearning("c:/test/image.tif", "c:/test/outfolder",
"c:/test/training.shp", "TIFF", "256",
"256", "128", "128", "NO", "KITTI_rectangles")
ExportTrainingDataForDeepLearning (ディープ ラーニング用のトレーニング データをエクスポート) の例 2 (スタンドアロン スクリプト)
この例では、ディープ ラーニング用のトレーニング サンプルを作成します。
# Import system modules and check out ArcGIS Spatial Analyst extension license
import arcpy
arcpy.CheckOutExtension("Spatial")
from arcpy.sa import *
# Set local variables
inRaster = "c:/test/image.tif"
out_folder = "c:/test/outfolder"
in_training = "c:/test/training.shp"
image_chip_format = "TIFF"
tile_size_x = "256"
tile_size_y = "256"
stride_x="128"
stride_y="128"
output_nofeature_tiles="NO"
metadata_format="KITTI_rectangles"
# Execute
ExportTrainingDataForDeepLearning(inRaster, out_folder, in_training,
image_chip_format,tile_size_x, tile_size_y,
stride_x, stride_y,output_nofeature_tiles,
metadata_format)
環境
ライセンス情報
- Basic: 次のものが必要 Spatial Analyst
- Standard: 次のものが必要 Spatial Analyst
- Advanced: 次のものが必要 Spatial Analyst