Spatial Analyst のライセンスで利用可能。
概要
ランダム ツリー分類方法を使用して Esri 分類器定義 (*.ecd) ファイルを作成します。
ランダム ツリーによる分類器定義は、過剰適合を低減し、セグメント化された画像やその他の補助ラスター データセットを操作できる画像分類の強力な手法です。標準的な画像入力の場合、このツールは任意のビット深度のマルチバンド画像を受け入れ、入力トレーニング フィーチャ ファイルに基づいてピクセル単位またはセグメントでランダム ツリー分類を実行します。
使用法
ランダム ツリーは、個々の意思決定ツリーのコレクションです。各ツリーは、トレーニング データのさまざまなサンプルやサブセットから生成されます。これらが意思決定ツリーと呼ばれるのは、分類されるすべてのピクセルに対して、重要性のランク順に多くの意思決定が行われるためです。ピクセルに対する意思決定を図にすると、木の枝のようになります。データセット全体を分類すると、この木の枝から樹木が形成されます。この方法は、トレーニング ピクセルのランダムな副選択に基づき、データセットを実際に多くの回数分類して、多くの意思決定ツリーを作成するため、ランダム ツリーと呼ばれます。最終的な意思決定を行うために、各ツリーには決定権があります。このプロセスは、過剰適合を低減する役割を果たします。ランダム ツリーは、多数の意思決定の構築に基づいた、教師付きコンピューター学習分類器です。各ツリーに対して変数のランダムなサブセットを選択し、ツリー出力の最頻値を全体の分類として使用します。ランダム ツリーは、トレーニング サンプル データに過剰適合する意思決定ツリーの傾向を矯正します。この手法では、多くのツリーが成長して森林のようになり、各ツリーの適合前にトレーニング データをランダムに選択されたサブスペースに投影することで、ツリー間のばらつきを生じさせています。各ノードでの決定は、ランダム化された手順によって最適化されます。
セグメント ラスターの場合、キー プロパティが [セグメント化] に設定されており、このツールは RGB セグメント ラスターからインデックス画像と、関連するセグメント属性を計算します。これらの属性は、別の分類ツールで使用される分類器定義ファイルを生成するために計算されます。各セグメントの属性は、Esri でサポートされている画像から計算できます。
ラスター製品、セグメント化されたラスター、モザイク、イメージ サービス、または一般的なラスター データセットなど、Esri でサポートされているラスターは入力として受け入れられます。セグメント ラスターは 3 バンドの 8 ビット ラスターである必要があります。
トレーニング サンプル ファイルを作成するには、[画像分類] ツールバーから [トレーニング サンプル マネージャー] を使用します。[画像分類] ツールバーの使用方法の詳細は、「画像分類とは」をご参照ください。
[セグメント属性] パラメーターは、ラスター レイヤー入力のうちのいずれかがセグメント画像である場合にのみ、有効になります。
構文
TrainRandomTreesClassifier(in_raster, in_training_features, out_classifier_definition, {in_additional_raster}, {max_num_trees}, {max_tree_depth}, {max_samples_per_class}, {used_attributes})
パラメーター | 説明 | データ タイプ |
in_raster | 分類対象のラスター データセット。 Esri でサポートされているラスター データセットを使用できます。オプションには、3 バンドの 8 ビット セグメント ラスター データセットが含まれます。ここでは、同じセグメント内のすべてのピクセルは同じ色を持ちます。入力は、1 バンドの 8 ビット グレースケール セグメント ラスターにすることもできます。 | Raster Layer; Mosaic Layer; Image Service; String |
in_training_features | トレーニング サイトを表すトレーニング サンプル ファイルまたはレイヤー。 これらは、トレーニング サンプルを含んでいる、シェープファイルまたはフィーチャクラスです。トレーニング サンプル ファイルには、次のフィールド名が必要です。
| Feature Layer; Raster Catalog Layer |
out_classifier_definition | 分類器に必要な属性情報、統計情報、その他の情報を含んでいる JSON ファイルです。.ecd 拡張子付きのファイルが作成されます。 | File |
in_additional_raster (オプション) | マルチスペクトル画像や DEM などの補助ラスター データセットを取り入れて、分類の属性やその他の必要な情報を生成できます。このパラメーターはオプションです。 | Raster Layer; Mosaic Layer; Image Service; String |
max_num_trees (オプション) | フォレスト内のツリーの最大数。ツリー数を増やすと、精度率が高くなります。ただし、この向上は最終的には一定になります。ツリー数は、処理時間を線形的に増加させます。 | Long |
max_tree_depth (オプション) | フォレスト内の各ツリーの最大深度。深度は、各ツリーが意思決定に至るまでに作成できるルールの数を示すもう 1 つの方法です。ツリーは、この設定を超えた深度には成長しません。 | Long |
max_samples_per_class (オプション) | 各クラスを定義するために使用するサンプルの最大数。 入力がセグメント ラスターでない場合は、デフォルトの値 1000 を推奨します。0 以下の値は、システムが分類器をトレーニングするためにトレーニング サイトのすべてのサンプルを使用することを意味します。 | Long |
used_attributes [used_attributes;used_attributes,...] (オプション) | 出力ラスターに関連付けられた属性テーブルに含める属性を指定します。
このパラメーターは、入力ラスターで [セグメント化] キー プロパティを true に設定した場合にのみ有効になります。このツールへの入力が、セグメント画像のみである場合、デフォルトの属性は COLOR、COUNT、COMPACTNESS、および RECTANGULARITY になります。セグメント画像とともに in_additional_raster が入力として含まれている場合、MEAN および STD 属性も使用できます。 | String |
コードのサンプル
TrainRandomTreesClassifier (ランダム ツリーによる分類器定義ファイルの作成) の例 1 (Python ウィンドウ)
以下は、TrainRandomTreesClassifier ツールを実行する Python サンプルです。
import arcpy
from arcpy.sa import *
TrainRandomTreesClassifier("c:/test/moncton_seg.tif",
"c:/test/train.gdb/train_features",
"c:/output/moncton_sig_SVM.ecd",
"c:/test/moncton.tif", "50", "30", "1000",
"COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY")
TrainRandomTreesClassifier (ランダム ツリーによる分類器定義ファイルの作成) の例 2 (スタンドアロン スクリプト)
以下は、TrainRandomTreesClassifier ツールを実行する Python スクリプト サンプルです。
# Import system modules
import arcpy
from arcpy.sa import *
# Set local variables
inSegRaster = "c:/test/cities_seg.tif"
train_features = "c:/test/train.gdb/train_features"
out_definition = "c:/output/cities_sig.ecd"
in_additional_raster = "c:/cities.tif"
maxNumTrees = "50"
maxTreeDepth = "30"
maxSampleClass = "1000"
attributes = "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY"
# Check out the ArcGIS Spatial Analyst extension license
arcpy.CheckOutExtension("Spatial")
# Execute
TrainRandomTreesClassifier(inSegRaster, train_features,
out_definition, in_additional_raster, maxNumTrees,
maxTreeDepth, maxSampleClass, attributes)
環境
ライセンス情報
- Basic: 次のものが必要 Spatial Analyst
- Standard: 次のものが必要 Spatial Analyst
- Advanced: 次のものが必要 Spatial Analyst