ArcGIS for Desktop

  • Документация
  • Стоимость
  • Поддержка

  • My Profile
  • Справка
  • Sign Out
ArcGIS for Desktop

ArcGIS Online

Картографическая платформа вашей организации

ArcGIS for Desktop

Полноценная профессиональная ГИС

ArcGIS for Server

ГИС предприятия

ArcGIS for Developers

Инструменты для встраивания приложений с местоположениями

ArcGIS Solutions

Бесплатные шаблоны карт и приложений для отрасли

ArcGIS Marketplace

Получение приложения и данных для вашей организации.

  • Документация
  • Стоимость
  • Поддержка
Esri
  • Войти
user
  • Мой профиль
  • Выход

Справка

  • Главная
  • Начало работы
  • Карта
  • Анализ
  • Управление данными
  • Инструменты
  • Дополнительно...

Видимость

Доступно с лицензией 3D Analyst.

  • Краткая информация
  • Использование
  • Синтаксис
  • Пример кода
  • Параметры среды
  • Информация о лицензировании

Краткая информация

Определяет положения на поверхности растра, которые видимы для набора объектов наблюдателей.

Более подробно об инструменте Видимость (Viewshed)

Использование

  • Определение точек наблюдения – процесс, требующий интенсивной работы процессора. Время на обработку зависит от разрешения растра. Для предварительного изучения территории вы можете воспользоваться более крупным размером ячейки, чтобы уменьшить количество ячеек входного растра. Используйте растр с полным разрешением, когда вы готовы создать растр с окончательными результатами.

  • Если входной растр содержит нежелательные шумы, вызванные погрешностями определений опорных точек, то при подключенном дополнительном модуле ArcGIS Spatial Analyst вы можете выполнить сглаживание растра с помощью низкочастотного фильтра, например, опции Среднее для функции Фокальная статистика, до запуска этого инструмента.

  • Видимость центра каждой ячейки определяется путем сравнивания угла высоты до центра ячейки с углом высоты локального горизонта. Локальный горизонт вычисляется с помощью рассмотрения участка поверхности между точкой наблюдения и центром текущей ячейки. Если точка лежит над местным горизонтом, она считается видимой.

  • Инструмент создает дополнительный выходной растр над уровнем поверхности (AGL). Каждая ячейка выходного растра AGL содержит значение минимальной высоты, которое должно быть добавлено к ячейке, чтобы сделать ее видимой хотя бы для одного наблюдателя.

    Если входные объекты-наблюдатели содержат несколько наблюдателей, выходное значение является минимальным из значений AGL от каждого из отдельных наблюдателей.

  • Когда возникает необходимость пересчитать входной растр, используется метод Билинейной интерполяции. Пример, когда входной растр может быть пересчитан, – когда выходные система координат, экстент или размер ячеек отличаются от входных.

Синтаксис

Viewshed_3d (in_raster, in_observer_features, out_raster, {z_factor}, {curvature_correction}, {refractivity_coefficient}, {out_agl_raster})
ПараметрОбъяснениеТип данных
in_raster

Входной растр поверхности.

Raster Layer
in_observer_features

Класс пространственных объектов, который определяет местоположения наблюдения.

Входными данными могут быть точечные или полилинейные объекты.

Feature Layer
out_raster

Выходной растр.

В выходных данных будет записано только количество, соответствующее подсчёту точек наблюдения (или вершин полилиний), из которых можно видеть каждую точку на входном растре. Частота наблюдения будет записана в поле VALUE таблицы атрибутов выходного растра.

Raster Dataset
z_factor
(дополнительно)

Количество наземных единиц измерения координат x,y в одной единице измерения z-значения поверхности.

Коэффициент z (z-factor) приводит в соответствие единицы измерения z-значений в том случае, если они отличаются от единиц измерения координат x,y входной поверхности. При вычислении результирующей выходной поверхности z-значения входной поверхности умножаются на коэффициент по z.

Если координаты x,y и z-значения приведены в одной и той же системе координат, коэффициент z равен 1. Это значение используется по умолчанию.

Если координаты x,y и z-значения приведены в отличающихся единицах измерения, для коэффициента по z должно быть задано соответствующее значение, или же результаты будут некорректными. Например, если единицы измерения для z-значений – футы, а координаты x,y приведены в метрах, для преобразования z-значений из футов в метры вы должны использовать коэффициент по z, равный 0,3048 (1 фут = 0,3048 метра).

Double
curvature_correction
(дополнительно)

Позволяет выполнять коррекцию на кривизну земли.

  • FLAT_EARTH — Не будет применяться коррекция кривизны. Это значение используется по умолчанию.
  • CURVED_EARTH — Будет применяться коррекция кривизны.
Boolean
refractivity_coefficient
(дополнительно)

Коэффициент рефракции видимого диапазона света в воздухе.

Значение, предлагаемое по умолчанию, равно 0,13.

Double
out_agl_raster
(дополнительно)

Выходной растр над уровнем поверхности (AGL).

AGL создает растр, в котором значение каждой ячейки является минимальной высотой, которая должна быть добавлена к невидимой ячейке, чтобы сделать ее видимой хотя бы для одного наблюдателя.

Ячейки, которые уже были видны, в выходном растре будут иметь значение 0.

Raster

Пример кода

Viewshed, пример 1 (окно Python)

В этом примере определяются местоположения поверхности, видимые для набора наблюдателей, заданного с помощью шейп-файла.

import arcpy
from arcpy import env
env.workspace = "C:/data"
arcpy.Viewshed_3d("elevation", "observers.shp", "C:/output/outvwshd01", 2,
                  "CURVED_EARTH", 0.15)
Viewshed, пример 2 (автономный скрипт)

В этом примере определяются местоположения поверхности, видимые для набора наблюдателей, заданного с помощью шейп-файла.

# Name: Viewshed_3d_Ex_02.py
# Description: Determines the raster surface locations visible to a set of
#              observer features.
# Requirements: 3D Analyst Extension

# Import system modules
import arcpy
from arcpy import env

# Set environment settings
env.workspace = "C:/data"

# Set local variables
inRaster = "elevation"
inObserverFeatures = "observers.shp"
outViewshed = "C:/output/outvwshd02"
zFactor = 2
useEarthCurvature = "CURVED_EARTH"
refractivityCoefficient = 0.15

# Check out the ArcGIS 3D Analyst extension license
arcpy.CheckOutExtension("3D")

# Execute Viewshed
arcpy.Viewshed_3d(inRaster, inObserverFeatures, outViewshed, zFactor,
                  useEarthCurvature, refractivityCoefficient)

Параметры среды

  • Автоподтверждение (Auto Commit)
  • Размер ячейки (Cell size)
  • Сжатие (Compression)
  • Текущая рабочая область (Current Workspace)
  • Экстент (Extent)
  • Географические преобразования (Geographic Transformations)
  • Маска (Mask)
  • Выходное ключевое слово CONFIG (Output CONFIG Keyword)
  • Выходная система координат (Output Coordinate System)
  • Статистика растра (Raster Statistics)
  • Временная рабочая область (Scratch Workspace)
  • Растр привязки (Snap Raster)
  • Размер листа (Tile Size)

Информация о лицензировании

  • ArcGIS for Desktop Basic: Требует Дополнительный модуль 3D Analyst или Spatial Analyst
  • ArcGIS for Desktop Standard: Требует Дополнительный модуль 3D Analyst или Spatial Analyst
  • ArcGIS for Desktop Advanced: Требует Дополнительный модуль 3D Analyst или Spatial Analyst

Связанные темы

  • Обзор группы инструментов Растровая модель поверхности
  • Обзор группы инструментов Видимость
  • Теоретические основы поверхностей
  • Анализ видимости
  • Использование инструментов Видимость и Точки наблюдения для анализа видимости
Отзыв по этому разделу?

ArcGIS for Desktop

  • На главную
  • Документация
  • Стоимость
  • Поддержка

ArcGIS Platform

  • ArcGIS Online
  • ArcGIS for Desktop
  • ArcGIS for Server
  • ArcGIS for Developers
  • ArcGIS Solutions
  • ArcGIS Marketplace

Об Esri

  • О нас
  • Карьера
  • Блог сотрудников
  • Конференция пользователей
  • Саммит разработчиков
Esri
© Copyright 2016 Environmental Systems Research Institute, Inc. | Конфиденциальность | Правовая информация