Доступно с лицензией 3D Analyst.
Краткая информация
Определяет местоположения растровой поверхности, видимые для набора объектов-наблюдателей или какие точки наблюдения видны из каждого положения на поверхности растра.
Использование
Инструмент поддерживает два типа анализа видимости, FREQUENCY и OBSERVERS, которые выбираются параметром Тип анализа. Для типа анализа первого типа инструмент определяет, какие местоположения растровой поверхности видимы для набора наблюдателей. Для другого параметра определяется, какие наблюдатели видны из каждого местоположения на поверхности растра.
Если входной растр содержит нежелательные шумы, вызванные погрешностями определений опорных точек, то при подключенном дополнительном модуле ArcGIS Spatial Analyst вы можете выполнить сглаживание растра с помощью низкочастотного фильтра, например, опции Среднее для функции Фокальная статистика, до запуска этого инструмента.
Видимость центра каждой ячейки определяется путем сравнивания угла высоты до центра ячейки с углом высоты локального горизонта. Локальный горизонт вычисляется с помощью рассмотрения участка поверхности между точкой наблюдения и центром текущей ячейки. Если точка лежит над местным горизонтом, она считается видимой.
Инструмент создает дополнительный выходной растр над уровнем поверхности (AGL). Каждая ячейка выходного растра AGL содержит значение минимальной высоты, которое должно быть добавлено к ячейке, чтобы сделать ее видимой хотя бы для одного наблюдателя.
Если входные объекты-наблюдатели содержат несколько наблюдателей, выходное значение является минимальным из значений AGL от каждого из отдельных наблюдателей.
Используйте параметры настройки наблюдателя для лучшего управления процессом анализа видимости. Например, с помощью параметра уровня глаз наблюдателя можно задать отступ наблюдателя по высоте.
Когда возникает необходимость пересчитать входной растр, используется метод Билинейной интерполяции. Пример, когда входной растр может быть пересчитан, – когда выходные система координат, экстент или размер ячеек отличаются от входных.
Синтаксис
Visibility_3d (in_raster, in_observer_features, out_raster, {out_agl_raster}, {analysis_type}, {nonvisible_cell_value}, {z_factor}, {curvature_correction}, {refractivity_coefficient}, {surface_offset}, {observer_elevation}, {observer_offset}, {inner_radius}, {outer_radius}, {horizontal_start_angle}, {horizontal_end_angle}, {vertical_upper_angle}, {vertical_lower_angle})
Параметр | Объяснение | Тип данных |
in_raster | Входной растр поверхности. | Raster Layer |
in_observer_features | Класс пространственных объектов, который определяет местоположения наблюдения. Входными данными могут быть точечные или полилинейные объекты. | Feature Layer |
out_raster | Выходной растр. В выходных данных будет записано либо число, соответствующее числу точек наблюдения, из которых можно видеть каждую точку на входном растре (тип анализа FREQUENCY), либо местоположения наблюдателей, видимые из каждой ячейки растровой поверхности (опция OBSERVERS). | Raster |
out_agl_raster (дополнительно) | Выходной растр над уровнем поверхности (AGL). AGL создает растр, в котором значение каждой ячейки является минимальной высотой, которая должна быть добавлена к невидимой ячейке, чтобы сделать ее видимой хотя бы для одного наблюдателя. Ячейки, которые уже были видны, в выходном растре будут иметь значение 0. | Raster |
analysis_type (дополнительно) | Тип анализа видимости.
| String |
nonvisible_cell_value (дополнительно) | Значение, присваиваемое невидимым ячейкам.
| Boolean |
z_factor (дополнительно) | Количество наземных единиц измерения координат x,y в одной единице измерения z-значения поверхности. Коэффициент z (z-factor) приводит в соответствие единицы измерения z-значений в том случае, если они отличаются от единиц измерения координат x,y входной поверхности. При вычислении результирующей выходной поверхности z-значения входной поверхности умножаются на коэффициент по z. Если координаты x,y и z-значения приведены в одной и той же системе координат, коэффициент z равен 1. Это значение используется по умолчанию. Если координаты x,y и z-значения приведены в отличающихся единицах измерения, для коэффициента по z должно быть задано соответствующее значение, или же результаты будут некорректными. Например, если единицы измерения для z-значений – футы, а координаты x,y приведены в метрах, для преобразования z-значений из футов в метры вы должны использовать коэффициент по z, равный 0,3048 (1 фут = 0,3048 метра). | Double |
curvature_correction (дополнительно) | Позволяет выполнять коррекцию на кривизну земли.
| Boolean |
refractivity_coefficient (дополнительно) | Коэффициент рефракции видимого диапазона света в воздухе. Значение, предлагаемое по умолчанию, равно 0,13. | Double |
surface_offset (дополнительно) | Это значение определяет вертикальное расстояние (в единицах поверхности), которое должно быть добавлено к z-значению каждой ячейки, в том случае, если этот параметр учитывается в анализе видимости. Это должно быть положительным целым числом или значением с плавающей точкой. Это может быть поле во входном наборе данных объектов-наблюдателей или числовое значение. По умолчанию используется числовое поле OFFSETB, если оно имеется в атрибутивной таблице входных объектов-наблюдателей. Вы можете перезаписать его, указав другое числовое поле или константу. Если этот параметр не задан и поле по умолчанию отсутствует в атрибутивной таблице входных объектов-наблюдателей, используется значение 0. | Field | Constant |
observer_elevation (дополнительно) | Это значение используется для определения высоты точек или вершин наблюдения на поверхности. Это может быть поле во входном наборе данных объектов-наблюдателей или числовое значение. По умолчанию используется числовое поле SPOT, если оно имеется в атрибутивной таблице входных объектов-наблюдателей. Вы можете перезаписать его, указав другое числовое поле или константу. Если этот параметр не задан и поле по умолчанию отсутствует в атрибутивной таблице входных объектов-наблюдателей, значение будет вычисляться с помощью билинейной интерполяции значений высот ячеек, окружающих точку наблюдения. | Field | Constant |
observer_offset (дополнительно) | Это значение определяет вертикальное расстояние (в единицах поверхности), которое должно быть добавлено к z-значению высоты наблюдателя. Это должно быть положительным целым числом или значением с плавающей точкой. Это может быть поле во входном наборе данных объектов-наблюдателей или числовое значение. По умолчанию используется числовое поле OFFSETA, если оно имеется в атрибутивной таблице входных объектов-наблюдателей. Вы можете перезаписать его, указав другое числовое поле или константу. Если этот параметр не задан и поле по умолчанию отсутствует в атрибутивной таблице входных объектов-наблюдателей, используется значение 1. | Field | Constant |
inner_radius (дополнительно) | Это значение определяет начальное расстояние, от которого определяется видимость. Ячейки, расположенные ближе этого расстояния являются невидимыми на выходном растре, но могут при этом блокировать видимость ячеек, расположенных между внутренним и внешним радиусом. Это может быть положительное или отрицательное целочисленное значение или значение с плавающей точкой. Если это положительное значение, оно интерпретируется как трехмерное расстояние по линии взгляда. Если это отрицательное значение, оно интерпретируется как двухмерное планиметрическое расстояние. Это может быть поле во входном наборе данных объектов-наблюдателей или числовое значение. По умолчанию используется числовое поле RADIUS1, если оно имеется в атрибутивной таблице входных объектов-наблюдателей. Вы можете перезаписать его, указав другое числовое поле или константу. Если этот параметр не задан и поле по умолчанию отсутствует в атрибутивной таблице входных объектов-наблюдателей, используется значение 0. | Field | Constant |
outer_radius (дополнительно) | Это значение определяет максимальное расстояние, от которого определяется видимость. Ячейки за пределами этого радиуса исключаются из анализа. Это может быть положительное или отрицательное целочисленное значение или значение с плавающей точкой. Если это положительное значение, оно интерпретируется как трехмерное расстояние по линии взгляда. Если это отрицательное значение, оно интерпретируется как двухмерное планиметрическое расстояние. Это может быть поле во входном наборе данных объектов-наблюдателей или числовое значение. По умолчанию используется числовое поле RADIUS2, если оно имеется в атрибутивной таблице входных объектов-наблюдателей. Вы можете перезаписать его, указав другое числовое поле или константу. Если этот параметр не задан и поле по умолчанию отсутствует в атрибутивной таблице входных объектов-наблюдателей, используется значение бесконечности. | Field | Constant |
horizontal_start_angle (дополнительно) | Это значение определяет начальный угол диапазона горизонтального сканирования. Это значение задается в градусах от 0 до 360; 0 соответствует направлению на север. По умолчанию значение равно 0. Это может быть поле во входном наборе данных объектов-наблюдателей или числовое значение. По умолчанию используется числовое поле AZIMUTH1, если оно имеется в атрибутивной таблице входных объектов-наблюдателей. Вы можете перезаписать его, указав другое числовое поле или константу. Если этот параметр не задан и поле по умолчанию отсутствует в атрибутивной таблице входных объектов-наблюдателей, используется значение 0. | Field | Constant |
horizontal_end_angle (дополнительно) | Это значение определяет конечный угол диапазона горизонтального сканирования. Это значение задается в градусах от 0 до 360; 0 соответствует направлению на север. Значение, предлагаемое по умолчанию, равно 360. Это может быть поле во входном наборе данных объектов-наблюдателей или числовое значение. По умолчанию используется числовое поле AZIMUTH2, если оно имеется в атрибутивной таблице входных объектов-наблюдателей. Вы можете перезаписать его, указав другое числовое поле или константу. Если этот параметр не задан и поле по умолчанию отсутствует в атрибутивной таблице входных объектов-наблюдателей, используется значение 360. | Field | Constant |
vertical_upper_angle (дополнительно) | Это значение определяет верхнюю границу вертикального угла сканирования над горизонтальной плоскостью. Это значение задается в градусах от 0 до 90, целочисленными или с плавающей точкой. Это может быть поле во входном наборе данных объектов-наблюдателей или числовое значение. По умолчанию используется числовое поле VERT1, если оно имеется в атрибутивной таблице входных объектов-наблюдателей. Вы можете перезаписать его, указав другое числовое поле или константу. Если этот параметр не задан и поле по умолчанию отсутствует в атрибутивной таблице входных объектов-наблюдателей, используется значение 90. | Field | Constant |
vertical_lower_angle (дополнительно) | Это значение определяет нижнюю границу вертикального угла сканирования под горизонтальной плоскостью. Это значение задается в градусах от -90 до 0, целочисленными или с плавающей точкой. Это может быть поле во входном наборе данных объектов-наблюдателей или числовое значение. По умолчанию используется числовое поле VERT2, если оно имеется в атрибутивной таблице входных объектов-наблюдателей. Вы можете перезаписать его, указав другое числовое поле или константу. Если этот параметр не задан и поле по умолчанию отсутствует в атрибутивной таблице входных объектов-наблюдателей, используется значение -90. | Field | Constant |
Пример кода
Visibility, пример 1 (окно Python)
В этом примере определяются местоположения поверхности, видимые для набора наблюдателей, заданного с помощью шейп-файла.
import arcpy
from arcpy import env
env.workspace = "c:/data"
arcpy.Visibility_3d("elevation", "observers.shp", "c:/output/visiout1",
"c:/output/aglout1", "FREQUENCY", "NODATA", "1",
"CURVED_EARTH", "0.13", "OFFSETB", "SPOT", "OFFSETA",
"RADIUS1", "RADIUS2", "AZIMUTH1", "AZIMUTH2",
"VERT1", "VERT2")
Visibility, пример 2 (автономный скрипт)
В этом примере определяется, какие точки наблюдения являются видимыми из каждого местоположения поверхности.
# Name: Viewshed_3d_Ex_02.py
# Description: Determines the raster surface locations visible
# to a set of observer features.
# Requirements: 3D Analyst Extension
# Import system modules
import arcpy
from arcpy import env
# Set environment settings
env.workspace = "c:/data"
# set local variables
inRaster = "elevation"
inObserverFeatures = "observers.shp"
outRaster = "c:/output/visiout1"
aglOutput = "c:/output/aglout1"
analysisType = "OBSERVERS"
nonVisibleValue = "ZERO"
zFactor = 1
useEarthCurvature = "CURVED_EARTH"
refractivityCoefficient = 0.13
surfaceOffset = 500
observerElevation = 2000
observerOffset = 500
innerRadius = 20000
outerRadius = 100000
horizStartAngle = 45
horizEndAngle = 215
vertUpperAngle = 5
vertLowerAngle = -5
# Check out the ArcGIS 3D Analyst extension license
arcpy.CheckOutExtension("3D")
# Execute Visibility
arcpy.Visibility_3d(inRaster, inObserverFeatures, outRaster, algOutput,
analysisType, nonVisibleValue, zFactor, useEarthCurvature,
refractivityCoefficient, surfaceOffset, observerElevation,
observerOffset, innerRadius, outerRadius, horizStartAngle,
horizEndAngle, vertUpperAngle, vertLowerAngle)
Параметры среды
- Автоподтверждение (Auto Commit)
- Размер ячейки (Cell size)
- Сжатие (Compression)
- Текущая рабочая область (Current Workspace)
- Экстент (Extent)
- Географические преобразования (Geographic Transformations)
- Маска (Mask)
- Выходное ключевое слово CONFIG (Output CONFIG Keyword)
- Выходная система координат (Output Coordinate System)
- Статистика растра (Raster Statistics)
- Временная рабочая область (Scratch Workspace)
- Растр привязки (Snap Raster)
- Размер листа (Tile Size)
Информация о лицензировании
- ArcGIS for Desktop Basic: Требует Дополнительный модуль 3D Analyst или Spatial Analyst
- ArcGIS for Desktop Standard: Требует Дополнительный модуль 3D Analyst или Spatial Analyst
- ArcGIS for Desktop Advanced: Требует Дополнительный модуль 3D Analyst или Spatial Analyst