ArcGIS Desktop

  • Документация
  • Поддержка

  • My Profile
  • Справка
  • Sign Out
ArcGIS Desktop

ArcGIS Online

Картографическая платформа вашей организации

ArcGIS Desktop

Полноценная профессиональная ГИС

ArcGIS Enterprise

ГИС предприятия

ArcGIS for Developers

Инструменты для встраивания приложений с местоположениями

ArcGIS Solutions

Бесплатные шаблоны карт и приложений для отрасли

ArcGIS Marketplace

Получение приложения и данных для вашей организации.

  • Документация
  • Поддержка
Esri
  • Войти
user
  • Мой профиль
  • Выход

ArcMap

  • На главную
  • Начало работы
  • Карта
  • Анализ
  • Управление данными
  • Инструменты
  • Дополнительные модули

SearchNeighborhoodSmoothCircular

  • Краткая информация
  • Синтаксис
  • Свойства
  • Пример кода

Краткая информация

Класс SearchNeighborhoodSmoothCircular может использоваться для задания окрестности поиска в Эмпирическом байесовском кригинге, ОВР, Интерполяции по методу локальных полиномов и в Радиальных базисных функциях (только при использовании ключевого слова INVERSE_MULTIQUADRIC_FUNCTION). Класс использует входные данные, задающие радиус окружности поиска и коэффициент сглаживания.

Более подробно о сглаженной интерполяции

Синтаксис

SearchNeighborhoodSmoothCircular ({radius}, {smoothFactor})
ПараметрОбъяснениеТип данных
radius

Расстояние, у единицах карты, задающее длину радиуса окружности поиска.

Double
smoothFactor

Определяет степень применяемого сглаживания. 0 – без сглаживания, 1 – максимальное сглаживание.

Double

Свойства

СвойствоОбъяснениеТип данных
radius
(чтение и запись)

Расстояние, в единицах карты, задающее длину радиуса окружности поиска.

Double
smoothFactor
(чтение и запись)

Определяет степень сглаживания: 0 – без сглаживания, 1 – максимальное сглаживание.

Double
nbrType
(только чтение)

Тип окрестности: Smooth (сглаженный) или Standard (стандартный).

String

Пример кода

SearchNeighborhoodSmoothCircular (окно Python)

Пример использования SearchNeighborhoodSmoothCircular с Эмпирическим байесовским кригингом для создания выходного растра.

import arcpy
arcpy.EmpiricalBayesianKriging_ga("ca_ozone_pts", "OZONE", "outEBK", "C:/gapyexamples/output/ebkout",
                                  100000, "NONE", 50, 0.5, 100,
                                  arcpy.SearchNeighborhoodSmoothCircular(300000, 0.5),
                                  "PREDICTION", "", "", "")
SearchNeighborhoodSmoothCircular (автономный скрипт)

Пример использования SearchNeighborhoodSmoothCircular с Эмпирическим байесовским кригингом для создания выходного растра.

# Name: EmpiricalBayesianKriging_Example_02.py
# Description: Bayesian kriging approach whereby many models created around the
#   semivariogram model estimated by the restricted maximum likelihood algorithm is used.
# Requirements: Geostatistical Analyst Extension
# Author: ESRI

# Import system modules
import arcpy

# Set environment settings
arcpy.env.workspace = "C:/gapyexamples/data"

# Set local variables
inPointFeatures = "ca_ozone_pts.shp"
zField = "ozone"
outLayer = "outEBK"
outRaster = "C:/gapyexamples/output/ebkout"
cellSize = 10000.0
transformation = "NONE"
maxLocalPoints = 50
overlapFactor = 0.5
numberSemivariograms = 100
# Set variables for search neighborhood
radius = 300000
smooth = 0.6
searchNeighbourhood = arcpy.SearchNeighborhoodSmoothCircular(radius, smooth)
outputType = "PREDICTION"
quantileValue = ""
thresholdType = ""
probabilityThreshold = ""
# Check out the ArcGIS Geostatistical Analyst extension license
arcpy.CheckOutExtension("GeoStats")

# Execute EmpiricalBayesianKriging
arcpy.EmpiricalBayesianKriging_ga(inPointFeatures, zField, outLayer, outRaster,
                                  cellSize, transformation, maxLocalPoints, overlapFactor, numberSemivariograms,
                                  searchNeighbourhood, outputType, quantileValue, thresholdType, probabilityThreshold)

ArcGIS Desktop

  • На главную
  • Документация
  • Поддержка

ArcGIS Platform

  • ArcGIS Online
  • ArcGIS Desktop
  • ArcGIS Enterprise
  • ArcGIS for Developers
  • ArcGIS Solutions
  • ArcGIS Marketplace

Об Esri

  • О нас
  • Карьера
  • Блог сотрудников
  • Конференция пользователей
  • Саммит разработчиков
Esri
Расскажите нам, что вы думаете.
Copyright © 2018 Esri. | Конфиденциальность | Правовая информация