ArcGIS Desktop

  • ArcGIS Pro
  • ArcMap

  • My Profile
  • Справка
  • Sign Out
ArcGIS Desktop

ArcGIS Online

Картографическая платформа вашей организации

ArcGIS Desktop

Полноценная профессиональная ГИС

ArcGIS Enterprise

ГИС предприятия

ArcGIS for Developers

Инструменты для встраивания приложений с местоположениями

ArcGIS Solutions

Бесплатные шаблоны карт и приложений для отрасли

ArcGIS Marketplace

Получение приложения и данных для вашей организации.

  • Документация
  • Поддержка
Esri
  • Войти
user
  • Мой профиль
  • Выход

ArcMap

  • На главную
  • Начало работы
  • Карта
  • Анализ
  • Управление данными
  • Инструменты
  • Дополнительные модули

Двумерные нормальные распределения

Доступно с лицензией Geostatistical Analyst.

В случае дизъюнктивного кригинга необходимы данные, имеющие двумерное нормальное распределение. Также для составления карт вероятности и квантилей предполагается, что источником данных является полное многомерное нормальное распределение. Для проверки на одномерное нормальное распределение можно использовать нормальные графики КК или гистограммы (ни одна из этих проверок не гарантирует, что исходные данные подчиняются полному многомерному нормальному распределению, но такое предположение часто является обоснованным, если эти инструменты диагностики обнаруживают одномерное нормальное распределение).

Рассмотрим следующее вероятностное высказывание:

f(p,в) = Prob[Z(ю) ≤ zp, Z(ю + в) ≤ zp],

где zp – стандартный нормальный квантиль для вероятности p.

Например, знакомый стандартный нормальный квантиль – когда p = 0,975, то zp = 1,96 и когда p = 0,5, то zp = 0 и когда p = 0,025, то zp = -1,96. В приведенном выше вероятностном высказывании для переменной Z в местоположении s и другой переменной Z в другом местоположении s + h устанавливается вероятность, что они обе меньше zp. Это вероятностное выражения является функцией f(p,h), зависящей от p (и, соответственно zp) and h. Эта функция также будет зависеть от уровня автокорелляции между Z(s) и Z(s + h).

Предположим, что Z(s) и Z(s + h) имеют двумерное нормальное распределение. Если автокорреляция известна, существуют формулы для f(p, h). Пусть h – константа и меняется только p. Можно ожидать, что функция будет выглядеть следующим образом:

Двумерное распределение для вероятности
Двумерное распределение для квантиля

Второй рисунок выглядит как кумулятивное распределение вероятностей. Теперь допустим, что p фиксировано, а f(p,h) меняется в зависимости от h.

Пусть сначала значение h очень мало. В этом случае Prob[Z(s) ≤ zp, Z(s + h) ≤ zp] почти эквивалентно Prob[Z(s) ≤ zp] = p. Далее, предположим, что h является очень большим. В этом случае Prob[Z(s) ≤ zp, Z(s + h) ≤ zp] почти эквивалентно Prob[Z(s) ≤ zp] Prob[Z(s + h) ≤ zp] = p2 (поскольку Z(s) and Z(s + h) практически независимы). Таким образом, для фиксированного p можно ожидать, что f(p, h) будет варьироваться между p и p2. Теперь, считая f(p, h) функцией p и длины h, получим результат, подобный приведенному на следующем рисунке:

Двумерное распределение для вероятности и расстояния

Эту функцию можно преобразовать в вариограммы и ковариационные функции для индикаторов. Prob[Z(s) ≤zp, Z(s + h) ≤zp] = E[I(Z(s) ≤zp)xI(Z(s + h) ≤zp)], где I(оператор) – индикаторная функция, которая принимает значение 1, если оператор = true, в противном случае она равна 0; тогда ковариационная функция для индикаторов при фиксированном p:

CI(в;p) = f(p,в) –p2,

а вариограмма для индикаторов при фиксированном p:

γI(в;p) = p -f(p,в).

Таким образом, можно рассчитать вариограмму и ковариационную функцию для индикаторов исходных данных и использовать их для получения ожидаемых вариограмм и ковариационных функций индикаторов для различных значений p.

Более подробно о двумерном нормальном распределении

Более подробно о вариограммах и ковариационных функциях

ArcGIS Desktop

  • На главную
  • Документация
  • Поддержка

ArcGIS Platform

  • ArcGIS Online
  • ArcGIS Desktop
  • ArcGIS Enterprise
  • ArcGIS for Developers
  • ArcGIS Solutions
  • ArcGIS Marketplace

Об Esri

  • О нас
  • Карьера
  • Блог Esri
  • Конференция пользователей
  • Саммит разработчиков
Esri
Расскажите нам, что вы думаете.
Copyright © 2019 Esri. | Конфиденциальность | Правовая информация