ArcGIS Desktop

  • ArcGIS Pro
  • ArcMap

  • My Profile
  • Справка
  • Sign Out
ArcGIS Desktop

ArcGIS Online

Картографическая платформа вашей организации

ArcGIS Desktop

Полноценная профессиональная ГИС

ArcGIS Enterprise

ГИС предприятия

ArcGIS for Developers

Инструменты для встраивания приложений с местоположениями

ArcGIS Solutions

Бесплатные шаблоны карт и приложений для отрасли

ArcGIS Marketplace

Получение приложения и данных для вашей организации.

  • Документация
  • Поддержка
Esri
  • Войти
user
  • Мой профиль
  • Выход

ArcMap

  • На главную
  • Начало работы
  • Карта
  • Анализ
  • Управление данными
  • Инструменты
  • Дополнительные модули

Классификатор изокластера с обучением

Доступно с лицензией Spatial Analyst.

  • Краткая информация
  • Использование
  • Синтаксис
  • Пример кода
  • Параметры среды
  • Информация о лицензиях

Краткая информация

Создает файл определения классификатора Esri (.ecd) с использованием определения классификации Изокластер.

Этот инструмент выполняет неконтролируемую классификацию.

Использование

  • Любой поддерживаемый Esri растр принимается в качестве входных данных, включая растровые продукты, сегментированный растр, мозаики, сервисы изображений или наборы растровых данных в общих форматах. Сегментированные растры должны быть 8-битными с 3 каналами.

  • Параметр Атрибуты сегмента включен только в том случае, когда одним из входных растровых слоев является сегментированное изображение.

Синтаксис

TrainIsoClusterClassifier (in_raster, max_classes, out_classifier_definition, {in_additional_raster}, {max_iterations}, {min_samples_per_cluster}, {skip_factor}, {used_attributes}, {max_merge_per_iter}, {max_merge_distance})
ПараметрОбъяснениеТип данных
in_raster

Выберите набор растровых данных, который вы хотите классифицировать.

Raster Layer; Mosaic Layer; Image Service; String
max_classes

Максимальное количество требуемых классов для группировки пикселов или сегментов. Оно должно быть больше числа классов в легенде.

Возможно, что вы получите меньше классов, чем указано этим параметром. Если необходимо больше классов, увеличьте это значение и агрегируйте классы после завершения процесса обучения.

Long
out_classifier_definition

Это файл JSON, который содержит информацию об атрибутах, статистику, гиперплоскостные векторы и другую информацию, необходимую для классификатора. Создается файл с расширением .ecd.

File
in_additional_raster
(Дополнительный)

Дополнительно включите вспомогательные наборы растровых данных, такие как спектрозональное изображение или ЦМР, для создания атрибутов и другой необходимой для классификации информации.

Raster Layer; Mosaic Layer; Image Service; String
max_iterations
(Дополнительный)

Максимальное число итераций для запуска процесса кластеризации.

Рекомендованный диапазон находится между 10 и 20 итерациями. Увеличение этого значения линейно увеличивает время обработки.

Long
min_samples_per_cluster
(Дополнительный)

Минимальное число пикселов или сегментов в действительном кластере или классе.

Показано, что значение 20, используемое по умолчанию, эффективно при создании статистически значимых классов. Вы можете увеличить это число, чтобы получить более точные классы; однако это может ограничить общее число создаваемых классов.

Long
skip_factor
(Дополнительный)

Максимальное число пропускаемых пикселов для входного пиксельного изображения. Если входным изображением является сегментированное, укажите число пропускаемых сегментов.

Long
used_attributes
[used_attributes;used_attributes,...]
(Дополнительный)

Укажите атрибуты, которые будут включены в связанную с выходным растром таблицу атрибутов.

  • COLOR —Значения цвета RGB , полученные их входного растра на основе каждого сегмента.
  • MEAN —Средний цифровой номер (DN), выведенный из дополнительного пиксельного изображения, на основе каждого сегмента.
  • STD —Среднеквадратическое отклонение, полученное из дополнительного пиксельного изображения, на основе каждого сегмента.
  • COUNT —Число пикселов, составляющих сегмент, на основе каждого сегмента.
  • COMPACTNESS —Соединяет сегменты, которые были разрезаны границами листов в процессе сегментации. Значения находятся в диапазоне от 0 до 1, где 1 соответствует кругу.
  • RECTANGULARITY —Степень, определяющая, насколько сегмент является прямоугольным, на основе каждого сегмента. Значения находятся в диапазоне от 0 до 1, где 1 соответствует прямоугольнику.

Это параметр активен только в тех случаях, когда для входного растра выбран ключевой параметр Сегментированный. Если для входных данных инструмента используется только сегментированное изображение, то атрибутами по умолчанию будут COLOR, COUNT, COMPACTNESS и RECTANGULARITY. Если в качестве входных данных вместе с сегментированным изображением также используется in_additional_raster, то тогда MEAN и STD будут доступны как опции.

String
max_merge_per_iter
(Дополнительный)

При увеличении числа слияний число создаваемых классов уменьшится. Меньшее значение приведет к созданию большего числа классов.

Long
max_merge_distance
(Дополнительный)

Увеличение расстояния сделает возможным слияние большего числа кластеров, что позволит получить меньше классов. Меньшее значение приведет к созданию большего числа классов.

Это расстояние между центрами кластеров в пространстве признаков. Хотя вы можете выбрать любое значение, значения в диапазоне от 0 до 5 позволяют получить наилучшие результаты.

Double

Пример кода

TrainIsoClusterClassifier, пример 1 (окно Python)

Следующий скрипт окна Python использует классификатор Изокластер для создания файла определения неконтролируемой классификации Esri с максимум десятью классами.

import arcpy
from arcpy.sa import *

TrainIsoClusterClassifier("c:/test/moncton_seg.tif", "10", 
                "c:/output/moncton_sig_iso.ecd","c:/test/moncton.tif", 
                "5", "10", "2", "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY")
TrainIsoClusterClassifier, пример 2 (автономный скрипт)

Данный примерный скрипт использует классификатор Изокластер для создания файла определения неконтролируемой классификации Esri с максимум десятью классами.

# Import system modules
import arcpy
from arcpy.sa import *


# Set local variables
inSegRaster = "c:/test/moncton_seg.tif"
maxNumClasses = "10"
out_definition = "c:/output/moncton_sig_iso.ecd"
in_additional_raster = "moncton.tif"
maxIteration = "20"
minNumSamples = "10"
skipFactor = "5"
attributes = "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY"

# Check out the ArcGIS Spatial Analyst extension license
arcpy.CheckOutExtension("Spatial")

# Execute 
TrainIsoClusterClassifier(inSegRaster, maxNumClasses, out_definition,
                          in_additional_raster, maxIteration, 
                          minNumSamples, skipFactor, attributes)

Параметры среды

  • Автоподтверждение
  • Текущая рабочая область
  • Экстент
  • Географические преобразования
  • Выходное ключевое слово CONFIG
  • Выходная система координат
  • Временная рабочая область

Информация о лицензиях

  • ArcGIS Desktop Basic: Требует Spatial Analyst
  • ArcGIS Desktop Standard: Требует Spatial Analyst
  • ArcGIS Desktop Advanced: Требует Spatial Analyst

Связанные разделы

  • Обзор группы инструментов Сегментация и классификация
  • Что такое классификация изображений?

ArcGIS Desktop

  • На главную
  • Документация
  • Поддержка

ArcGIS Platform

  • ArcGIS Online
  • ArcGIS Desktop
  • ArcGIS Enterprise
  • ArcGIS for Developers
  • ArcGIS Solutions
  • ArcGIS Marketplace

Об Esri

  • О нас
  • Карьера
  • Блог Esri
  • Конференция пользователей
  • Саммит разработчиков
Esri
Расскажите нам, что вы думаете.
Copyright © 2019 Esri. | Конфиденциальность | Правовая информация