ArcGIS Desktop

  • ArcGIS Pro
  • ArcMap

  • My Profile
  • Справка
  • Sign Out
ArcGIS Desktop

ArcGIS Online

Картографическая платформа вашей организации

ArcGIS Desktop

Полноценная профессиональная ГИС

ArcGIS Enterprise

ГИС предприятия

ArcGIS Developers

Инструменты для встраивания приложений с местоположениями

ArcGIS Solutions

Бесплатные шаблоны карт и приложений для отрасли

ArcGIS Marketplace

Получение приложения и данных для вашей организации.

  • Документация
  • Поддержка
Esri
  • Войти
user
  • Мой профиль
  • Выход

ArcMap

  • На главную
  • Начало работы
  • Карта
  • Анализ
  • Управление данными
  • Инструменты
  • Дополнительные модули

Как действует интерполяция ядра с барьерами

  • Функции ядра
  • Ссылки и дополнительная литература

Интерполяция ядра – это вариант преобразования первого порядка по методу локальных полиномов, в котором неустойчивость расчетов предотвращается методом, схожим с используемым в гребневой регрессии для определения коэффициентов регрессии. Оценка имеет малое смещение и гораздо точнее метода оценки без смещения, потому стоит использовать этот метод как предпочитаемый метод оценки. Подробнее о гребневой регрессии можно прочесть, например, в работе Hoerl and Kennard (1970).

Ошибка прогноза интерполяции по методу локальных полиномов оценивается с учетом допущения, что модель верна, так что пространственное число обусловленности мало везде. Это предположение часто нарушается, и пространственное число обусловленности выделяет области, где прогнозы и их среднеквадратические погрешности нестабильны. В модели со сглаживанием ядра проблема чрезмерно больших среднеквадратических погрешностей и спорных прогнозов исправляется с помощью параметра хребта, введением небольшого смещения в уравнения. Это снимает необходимость привязки пространственного числа обусловленности. Таким образом, интерполяция ядра для типа выходной поверхности дает только интерполяцию и стандартную ошибку интерполяции. Поскольку параметр хребта вводит смещение для стабилизации прогнозов, следует использовать настолько малое значение, насколько возможно при соблюдении стабильности модели. Подробнее об этом можно прочитать в статье «Local Polynomials for Data Detrending and Interpolation in the Presence of Barriers», Gribov and Krivoruchko (2010).

Еще одно различие между моделями состоит в том, что модель интерполяции ядра использует наименьшее расстояние между точками, так что точки по разным сторонам определенного непроходимого (абсолютного) барьера соединены серией прямых линий.

Интерполяция ядра использует следующие радиально-симметричные ядра: экспоненциальное, гауссово, четвертого порядка, Епанечникова, полиномиальное пятого порядка и константу. Ширина ядра определяется прямоугольником вокруг наблюдений.

Ядро Епанечникова обычно показывает лучшие результаты с полиномами первой степени. Однако в зависимости от данных, перекрестная и диагностическая проверка могут требовать другого ядра, см. Fan and Gijbels (1996).

Прогнозы интерполяции ядра с барьерами сравниваются ниже с абсолютными, левыми, правыми и без барьеров. Обратите внимание, что на рисунке слева изолинии резко меняются у барьеров, а на рисунке справа изолинии плавно переходят через них.

Прогнозы интерполяции ядра с абсолютными барьерами
Прогнозы интерполяции ядра с абсолютными барьерами.
Прогнозы интерполяции ядра без абсолютных барьеров
Прогнозы интерполяции ядра без абсолютных барьеров.

Модели, основанные на кратчайшем расстоянии между точками, предпочтительнее использовать в гидрологических и метеорологических приложениях.

Функции ядра

Функции ядра: во всех формулах, приведенных ниже, r –– радиус с центром в точке s, h – ширина канала.

  • Экспоненциальные:

    Экспоненциальная функция ядра

  • Гауссово:

    Гауссова функция ядра

  • Биквадратная

    Биквадратная функция ядра

  • Функция Епанечникова:

    Функция Епанечникова ядра

  • PolynomialOrder5:

    Функция ядра PolynomialOrder5

  • Константа:

    Функция ядра Константа

    где I(expression) является индикатором функции, который принимает значение 1, если expression равно true, и 0, если expression равно false.

Параметр ширины ядра применяется ко всем функциям ядра, кроме константы. Функции ядра экспоненциальная, гауссова и константа дополнительно поддерживают сглаженную окрестность поиска для ограничения диапазона ядра.

Ссылки и дополнительная литература

Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications, Chapman & Hall. London.

Hoerl, A.E. and Kennard, R.W. (1970), Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 12, 55-67.

Yan, Xin. (2009) Linear regression analysis : theory and computing. Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224.

ArcGIS Desktop

  • На главную
  • Документация
  • Поддержка

ArcGIS

  • ArcGIS Online
  • ArcGIS Desktop
  • ArcGIS Enterprise
  • ArcGIS
  • ArcGIS Developer
  • ArcGIS Solutions
  • ArcGIS Marketplace

Об Esri

  • О нас
  • Карьера
  • Блог Esri
  • Конференция пользователей
  • Саммит разработчиков
Esri
Расскажите нам, что вы думаете.
Copyright © 2021 Esri. | Конфиденциальность | Правовая информация