Обзор
Функция Арифметика каналов выполняет арифметическую операцию над каналами набора растровых данных. Можно выбрать готовые алгоритмы или ввести свою простую формулу. Поддерживаются операторы -,+,/,* и унарный -.
Примечания
При использовании метода Пользовательский чтобы задать арифметический алгоритм канала вы можете ввести однострочную алгебраическую формулу и получить одноканальный результат. Поддерживаются операторы -,+,/,* и унарный -. Чтобы определить эти каналы, добавьте B или b перед номером канала. Например:
B1 + B2 b1 + (-b2) (B1 + B2) / 2(B3 * B5)
Для этих предопределенных индексы укажите разделенный пробелами список, указывающий используемые номера каналов. Ниже перечислены предопределенные индексы.
Метод CIg
Индекс хлорофилла – зеленый (Chlorophyll Index - Green (Clg)) – это индекс растительности, который используется для оценки содержания хлорофилла в листьях, при этом измеряется степень отраженного излучения в ближнем инфракрасном и зеленом каналах.
CIg = [(NIR / Green)-1]
- NIR = значения пикселов из ближнего инфракрасного канала
- Green = значения пикселов из зеленого канала
С помощью списка, разделенного пробелами, определяются ближний инфракрасный (NIR) и зеленый каналы в следующем порядке: NIR Green. Например, 7 3.
Литература: Gitelson, A.A., Kaufman, Y.J., Merzlyak, M.N., 1996. "Use of a green channel in remote sensing of global vegetation from EOS-MODIS," Remote Sensing of Environment, Vol. 58, 289–298.
Метод CIre
Метод Индекс хлорофилла – дальний ИК (Chlorophyll Index - Red-Edge (CIre)) – это индекс растительности, который используется для оценки содержания хлорофилла в листьях, при этом измеряется степень отраженного излучения в ближнем инфракрасном и дальнем инфракрасном каналах.
Clre = [(NIR / RedEdge)-1]
- NIR = значения пикселов из ближнего инфракрасного канала
- RedEdge = значения пикселов из дальнего инфракрасного канала
С помощью списка, разделенного пробелами, определяются ближний инфракрасный (NIR) и дальний инфракрасный (red-edge) каналы в следующем порядке: NIR RedEdge. Например, 7 6.
Литература:
- Gitelson, A.A., Merzlyak, M.N., 1994. "Quantitative estimation of chlorophyll using reflectance spectra, Journal of Photochemistry and Photobiology B 22, 247–252.
Метод GEMI
Метод Индекс глобального мониторинга окружающей среды (Global Environmental Monitoring Index, GEMI) – нелинейный индекс растительности для глобального мониторинга окружающей среды по спутниковым снимкам. Он подобен NDVI, но менее чувствителен к влиянию атмосферы. На него влияет обнаженная почва; поэтому его не рекомендуется использовать в областях с редкой или умеренно густой растительностью.
GEMI = eta*(1-0.25*eta)-((Red-0.125)/(1-Red))
где
eta = (2*(NIR2-Red2)+1.5*NIR+0.5*Red)/(NIR+Red+0.5)
- NIR = значения пикселов из ближнего инфракрасного канала
- Red = значения пикселов из красного канала
С помощью списка, разделенного пробелами, определяются ближний инфракрасный (NIR) и красный (red) каналы в следующем порядке: NIR Red Например, 4 3.
Этот индекс выводит значения между 0 и 1.
Литература: Pinty, B. and Verstraete, M. M. 1992, "GEMI: a non-linear index to monitor global vegetation from satellites," Plant Ecology, Vol. 101, 15–20.
Метод GNDVI
Метод Индекс растительности нормализованная разница зеленого (Green Normalized Difference Vegetation Index (GNDVI)) – это индекс растительности для оценки активности фотосинтеза, он обычно используется для оценки потребления растениями воды и удобрений.
GNDVI = (NIR-Green)/(NIR+Green)
- NIR = значения пикселов из ближнего инфракрасного канала
- Green = значения пикселов из зеленого канала
С помощью списка, разделенного пробелами, определяются ближний инфракрасный (NIR) и зеленый каналы в следующем порядке: NIR Green. Например, 5 3.
Этот индекс выводит значения между -1,0 и 1,0.
Литература: Buschmann, C. и E. Nagel. 1993. "In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation," International Journal of Remote Sensing, Vol. 14, 711–722.
Метод GVI (Landsat TM)
Метод Индекс зеленой растительности (Green Vegetation Index (GVI)) изначально был разработан на основе снимков Landsat MSS и модифицирован для снимков Landsat TM. Он также известен как индекс зеленой растительности Landsat TM Tasseled Cap. Его можно применять к снимкам, каналы которых обладают такими же спектральными характеристиками.
GVI=-0.2848*Band1-0.2435*Band2-0.5436*Band3+0.7243*Band4+0.0840*Band5-1.1800*Band7
С помощью списка, разделенного пробелами, определяются шесть каналов Landsat TM в порядке от первого до пятого и шестого. Например, 1 2 3 4 5 6. Если входные данные содержат 6 каналов в ожидаемом порядке, то в текстовое поле Индексы каналов не нужно вводить значение.
Этот индекс выводит значения между -1 и 1.
Литература: Todd, S. W., R. M. Hoffer, and D. G. Milchunas, 1998, "Biomass estimation on grazed and ungrazed rangelands using spectral indices," International Journal of Remote Sensing, Vol. 19, No. 3, 427–438.
Модифицированный метод SAVI
Метод Модифицированный индекс растительности с коррекцией по почве (Modified Soil Adjusted Vegetation Index, MSAVI2) минимизирует влияние обнаженной почвы на индекс SAVI.
MSAVI2 = (1/2)*(2(NIR+1)-sqrt((2*NIR+1)2-8(NIR-Red)))
- NIR = значения пикселов из ближнего инфракрасного канала
- Red = значения пикселов из красного канала
С помощью списка, разделенного пробелами, определяются ближний инфракрасный (NIR) и красный (red) каналы в следующем порядке: NIR Red Например, 4 3.
Литература: Qi, J. et al., 1994, "A modified soil vegetation adjusted index," Remote Sensing of Environment, Vol. 48, No. 2, 119–126.
Метод MTVI2
Метод Измененный триангуляционный индекс растительности (Modified Triangular Vegetation Index (MTVI2)) – это индекс растительности для определения содержания хлорофилла в листьях в масштабе растительного покрова, при этом он относительно независим от индекса площади самого листа. Он учитывает отражательную способность в зеленом, красном и ближнем инфракрасном каналах.
MTVI2 = [1.5(1.2(NIR-Green)-2.5(Red-Green))√((2NIR+1)²-(6NIR-5√(Red))-0.5)]
- NIR = значения пикселов из ближнего инфракрасного канала
- Red = значения пикселов из красного канала
- Green = значения пикселов из зеленого канала
С помощью списка, разделенного пробелами, определяются ближний инфракрасный (NIR), красный и зеленый каналы в следующем порядке: NIR Red Green. Например, 7 5 3.
Литература: Haboudane, D., Miller, J.R., Tremblay, N., Zarco-Tejada, P.J., Dextraze, L., 2002. "Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture," Remote Sensing of Environment, Vol. 81, 416–426.
Метод NDVI
Метод Стандартизованный индекс различия растительного покрова (Normalized Difference Vegetation Index (NDVI)) – стандартизированный индекс, позволяющий генерировать изображение, отображающее зелень (относительную биомассу). Этот индекс использует контраст характеристик двух каналов из набора мультиспектральных растровых данных: поглощения пигментом хлорофилла в красном канале и высокой отражательной способности растительного сырья в инфракрасном канале (NIR).
Документированное уравнение NDVI, используемое по умолчанию:
NDVI = ((NIR - Red)/(NIR + Red))
- NIR = значения пикселов из ближнего инфракрасного канала
- Red = значения пикселов из красного канала
С помощью списка, разделенного пробелами, определяются ближний инфракрасный (NIR) и красный (red) каналы в следующем порядке: NIR Red Например, 4 3.
Этот индекс выводит значения между -1,0 и 1,0.
Литература: Rouse, J.W., R.H. Haas, J.A. Schell и D.W. Deering, 1973, "Monitoring vegetation systems in the Great Plains with ERTS," Third ERTS Symposium, NASA SP-351 I:309–317.
Метод NDVIre
Метод Дальний инфракрасный NDVI (Red-Edge NDVI (NDVIre)) – это индекс растительности для оценки состояния растительности с помощью дальнего ИК канала. Он особенно хорошо подходит для оценки состояния сельскохозяйственных культур на средней и поздних стадиях созревания, когда концентрация хлорофилла сравнительно высокая. Также NDVIre можно использовать для картографирования изменений содержания азота в листве в пределах одного поля, чтобы контролировать количество внесения удобрений.
Индекс NDVIre рассчитывается на основе значений ближнего и дальнего ИК-каналов.
NDVIre = (NIR - RedEdge)/(NIR + RedEdge)
- NIR = значения пикселов из ближнего инфракрасного канала
- RedEdge = значения пикселов из дальнего инфракрасного канала
С помощью списка, разделенного пробелами, определяются ближний инфракрасный (NIR) и дальний инфракрасный (red-edge) каналы в следующем порядке: NIR RedEdge. Например, 7 6.
Этот индекс выводит значения между -1,0 и 1,0.
Литература: Gitelson, A.A., Merzlyak, M.N., 1994. "Quantitative estimation of chlorophyll using reflectance spectra, Journal of Photochemistry and Photobiology B 22, 247–252.
Метод PVI
Метод Перпендикулярный индекс растительности (Perpendicular Vegetation Index (PVI)) подобен разностному индексу растительности; однако он чувствителен к атмосферным отклонениям. При использовании этого метода для сравнения изображений его следует применять только к изображениям, скорректированным по атмосфере.
PVI = (NIR - a*Red - b) / (sqrt(1 + a2))
- NIR = значения пикселов из ближнего инфракрасного канала
- Red = значения пикселов из красного канала
- a = уклон линии почвы
- b = градиент линии почвы
С помощью списка, разделенного пробелами, определяются ближний инфракрасный (NIR) и красный (red) каналы, а также значения a и b в следующем порядке: NIR Red a b Например, 4 3 0.3 0.5.
Этот индекс выводит значения между -1,0 и 1,0.
Литература: Richardson, A. J. and C. L. Wiegand, 1977, "Distinguishing vegetation from soil background information," Photogrammetric Engineering and Remote Sensing, 43, 1541–1552.
Метод RTVIcore
Метод Триангулированный индекс растительности красного края (Red-Edge Triangulated Vegetation Index (RTVICore)) – это индекс растительности для оценки индекса площади листьев и всей биомассы. Этот индекс использует отражения в ближнем и дальнем инфракрасных и в зеленом каналах спектра.
RTVICore = [100(NIR-RedEdge)-10(NIR-Green)]
- NIR = значения пикселов из ближнего инфракрасного канала
- RedEdge = значения пикселов из дальнего инфракрасного канала
- Green = значения пикселов из зеленого канала
С помощью списка, разделенного пробелами, определяются ближний инфракрасный, дальний инфракрасный и зеленый каналы в следующем порядке: NIR RedEdge Green. Например, 7 6 3.
Литература: Haboudane, D., Miller, J.R., Pattey, E., Zarco-Tejada, P.J., Strachan, I.B., 2004. "Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture," Remote Sensing of Environment, Vol. 90, 337–352.
Метод SAVI
Метод Индекс растительности с коррекцией по почве (Soil-Adjusted Vegetation Index (SAVI)) – это индекс растительности, который пытается минимизировать влияние яркости почвы с помощью коэффициента коррекции яркости почвы. Он часто используется в пустынных областях, где растительное покрытие незначительно, а результатами будут значения от -1.0 и 1.0.
SAVI = ((NIR - Red) / (NIR + Red + L)) x (1 + L)
- NIR = значения пикселов из ближнего инфракрасного канала
- Red = значения пикселов из красного канала
- L = коэффициент корректировки яркости почвы, который варьируется в зависимости от величины зеленого растительного покрытия. В областях без зеленого растительного покрытия L=1; в областях с умеренным зеленым растительным покрытием L=0,5; а в областях с очень густым растительным покрытием L=0 (что эквивалентно методу NDVI).
С помощью списка, разделенного пробелами, определяются ближний инфракрасный (NIR) и красный (red) каналы, а также значение L в следующем порядке: NIR Red L. Например, 4 3 0.5.
Литература: Huete, A. R., 1988, "A soil-adjusted vegetation index (SAVI)," Remote Sensing of Environment, Vol 25, 295–309.
Метод SR
Метод Простое отношение (SR) является общим индексом вегетации для оценки количества растительности. Это отношение света, рассеянного в ближнем ИК-диапазоне и поглощенного в красных каналах спектра, таким образом вводится поправка за искажения за счет атмосферы и топографии.
Высокие значения присущи растительности с высоким значением индекса площади листа, либо с высокой степенью покрытия почвы, а низкие - для почвы, воды и других нерастительных объектов. Значения варьируются от 0 до примерно 30, при этом для здоровой растительности характерны значения от 2 до 8.
SR = NIR / Red
- NIR = значения пикселов из ближнего инфракрасного канала
- Red = значения пикселов из красного канала
С помощью списка, разделенного пробелами, определяются ближний инфракрасный (NIR) и красный (red) каналы в следующем порядке: NIR Red Например, 4 3.
Литература: Birth, G.S., and G.R. McVey, 1968. "Measuring color of growing turf with a reflectance spectrophotometer," Agronomy Journal Vol. 60, 640-649.
Метод SRre
Метод Простое отношение дальнего ИК-диапазона (Red-Edge Simple Ratio (SRre)) является общим индексом вегетации для оценки количества растительности. Это отношение света, рассеянного в ближнем и дальнем ИК-диапазонах, таким образом вводится поправка за искажения за счет атмосферы и топографии.
Высокие значения присущи здоровой растительности с высокой степенью покрытия почвы, ниже - для угнетенной густой растительности, самые низкие - для воды, почвы и других нерастительных объектов. Значения варьируются от 0 до примерно 30, при этом для здоровой растительности характерны значения от 1 до 10.
SRre = NIR / RedEdge
- NIR = значения пикселов из ближнего инфракрасного канала
- RedEdge = значения пикселов из дальнего инфракрасного канала
С помощью списка, разделенного пробелами, определяются ближний инфракрасный (NIR) и дальний инфракрасный (red-edge) каналы в следующем порядке: NIR RedEdge. Например, 7 6.
Литература: Anatoly A. Gitelson, Yoram J. Kaufman, Robert Stark, and Don Rundquist, 2002, "Novel algorithms for remote estimation of vegetation fraction," Remote Sensing of Environment, Vol. 80, 76–87.
Метод формулы Султана
При методе Султана берется шестиканальное 8-битное изображение и с помощью метода формулы Султана создается трехканальное 8-битное изображение. В полученном изображении выделяются скальные образования на побережьях, называемые офиолитами. Эта формула была разработана на основе каналов TM или ETM сцены Landsat 5 или 7. Для создания каждого канала выходных данных применяются следующие уравнения:
Band 1 = (Band5 / Band7) x 100 Band 2 = (Band5 / Band1) x 100 Band 3 = (Band3 / Band4) x (Band5 / Band4) x 100
С помощью списка, разделенного пробелами, определяются индексы пяти необходимых каналов. Например, 1 3 4 5 6. Если входные данные содержат 6 каналов в ожидаемом порядке, то в текстовое поле Индексы каналов не нужно вводить ни какого значения.
Литература: Sultan, M., Arvidson, R.E, Sturchio, N.C. & Guiness, E.A. 1987, "Lithologic mapping in Arid Regions with Landsat thematic mapper data: Meatig Dome, Egypt," Geological Society of America Bulletin 99: 748-762
Метод Измененный SAVI
Метод Преобразованный индекс растительности с коррекцией по почве (Transformed Soil Adjusted Vegetation Index (TSAVI)) – это индекс растительности, который пытается минимизировать влияние яркости почвы путем предположения, что линия почвы имеет произвольный уклон и пересечение.
TSAVI = (s * (NIR - s * Red - a)) / (a * NIR + Red - a * s + X * (1 + s2))
- NIR = значения пикселов из ближнего инфракрасного канала
- Red = значения пикселов из красного канала
- s = уклон линии почвы
- a = пересечение линии почвы
- X = коэффициент коррекции, установленный для минимизации искажений из-за почвы
С помощью списка, разделенного пробелами, определяются ближний инфракрасный (NIR) и красный (red) каналы, а также вводятся значения s, a и Х в следующем порядке: NIR Red s a X. Например, 3 1 0.33 0.50 1.50.
Литература: Baret, F. и G. Guyot, 1991, "Potentials and limits of vegetation indices for LAI and APAR assessment," Remote Sensing of Environment, Vol. 35, 161–173.
Метод VARI
Метод Индекс устойчивости к видимой атмосфере (Visible Atmospherically Resistant Index (VARI)) – это индекс растительности для количественной оценки фракции растительности только в видимом диапазоне спектра.
VARI = (Green - Red) / (Green + Red – Blue)
- Red = значения пикселов из красного канала
- Green = значения пикселов из зеленого канала
- Blue = значения пикселов из синего канала
С помощью списка, разделенного пробелами, красный, зеленый и голубой каналы в следующем порядке: Red Green Blue. Например, 3 2 1.
Литература: Anatoly A. Gitelson, Yoram J. Kaufman, Robert Stark, and Don Rundquist, 2002, "Novel algorithms for remote estimation of vegetation fraction," Remote Sensing of Environment, Vol. 80, 76–87.
Параметры
Параметр | Описание |
---|---|
Входной растр | Входной растр. |
Метод | Тип алгоритма арифметики каналов, который нужно использовать. Можно задать пользовательский алгоритм или выбрать один из преднастроенных. Пользовательский – позволяет задать свое выражение для арифметики каналов. NDVI – нормализованный относительный индекс растительности SAVI – корректированный почвенный индекс Transformed SAVI – трансформированный корректированный почвенный индекс Modified SAVI – модифицированный корректированный почвенный индекс GEMI – индекс глобального мониторинга окружающей среды PVI – Перпендикулярный вегетационный индекс GVI (Landsat TM)—зеленый индекс вегетации Landsat TM Sultan's Formula – формула Султана VARI – индекс устойчивости к видимой атмосфере GNDVI – зеленый нормализованный относительный индекс растительности SR – простое отношение NDVIre – дальний инфракрасный нормализованный относительный индекс растительности SRre – простое отношение MTVI2 – измененный триангуляционный индекс вегетации (вторая итерация) RTVICore – дальний инфракрасный триангуляционный индекс вегетации Clre – индекс хлорофилла - дальний ИК Clg – индекс хлорофилла - зеленый NDVI – нормализованный относительный индекс растительности |
Индексы каналов | Определите свою арифметическую формулу каналов, если выбрано Пользовательский для параметра Метод. Если для параметра Метод выбран один из уже имеющихся индексов, укажите правильные каналы входного набора растровых данных, которые соответствуют данному индексу. |