ArcGIS Desktop

  • ArcGIS Pro
  • ArcMap

  • My Profile
  • Справка
  • Sign Out
ArcGIS Desktop

ArcGIS Online

Картографическая платформа вашей организации

ArcGIS Desktop

Полноценная профессиональная ГИС

ArcGIS Enterprise

ГИС предприятия

ArcGIS for Developers

Инструменты для встраивания приложений с местоположениями

ArcGIS Solutions

Бесплатные шаблоны карт и приложений для отрасли

ArcGIS Marketplace

Получение приложения и данных для вашей организации.

  • Документация
  • Поддержка
Esri
  • Войти
user
  • Мой профиль
  • Выход

ArcMap

  • На главную
  • Начало работы
  • Карта
  • Анализ
  • Управление данными
  • Инструменты
  • Дополнительные модули

Кластеризация с высокими/низкими значениями (Глобальный индекс Getis-Ord G)

  • Сводка
  • Иллюстрация
  • Использование
  • Синтаксис
  • Пример кода
  • Environments
  • Информация о лицензиях

Сводка

Измеряет степень кластеризации высоких или низких значений, используя расчет глобального индекса Getis-Ord G.

Доступ к результатам этого инструмента (в том числе дополнительному PDF-файлу отчета) можно получить в окне Результаты (Results). Если отключить фоновую обработку, результаты также будут показаны в диалоговом окне Ход процесса.

Более подробно о Кластеризации с высокими/низкими значениями (Глобальный индекс Getis-Ord G)

Иллюстрация

Иллюстрация инструмента Кластеризация с высокими/низкими значениями (Глобальный индекс Getis-Ord G)

Использование

  • Инструмент Кластеризация с высокими/низкими значениями возвращает четыре значения: Наблюдаемое общее G, Ожидаемое общее G, z-оценка и p-значение. Эти значения доступны в окне результатов и также передаются в качестве производных выходных данных для потенциального использования в моделях и скриптах. Дополнительно, этот инструмент создаст HTML-файл с графическим представлением результатов. Если дважды щелкнуть HTML-файл в окне результатов, данный HTML-файл откроется в установленном по умолчанию браузере. Если щелкнуть правой кнопкой мыши запись Сообщения в окне Результаты и выбрать Вид, результаты можно будет просмотреть в диалоговом окне Сообщение.

    Результаты работы инструмента отображаются в Окне результатов.
    Примечание:
    • Если данный инструмент является частью пользовательского инструмента моделирования, HTML-ссылка появится в окне Результаты только в том случае, если перед запуском инструмента это было задано в параметрах модели.
    • Для лучшего отображения графики HTML, установите разрешение вашего монитора 96 точек на дюйм.

  • В Входном поле должен содержаться массив неотрицательных значений. Вы получите сообщение об ошибке при наличии в Входное Поле негативных значений. В дополнение, с математической точки зрения, проводимые статистические операции требуют, чтобы исходные переменные варьировали; например, анализ не будет произведен, если все входящие значения равны 1. Если вы хотите использовать данный инструмент для анализа пространственных закономерностей случайных данных, попробуйте агрегировать ваши случайные данные. Для анализа пространственных закономерностей случайных данных может также использоваться инструмент Оптимизированный анализ горячих точек.

    Примечание:

    Инцидентными данными являются точки, представляющие события (преступление, дорожно-транспортное происшествие) или объекты (деревья, магазины), по отношению к которым ваше внимание концентрируется скорее на их наличии или отсутствии, чем на атрибутах, свойственных каждой такой точке.

  • Z-оценки и р-значения являются измерителями статистической значимости, которая свидетельствует о возможности отклонить нулевую гипотезу. Для этого инструмента нулевая гипотеза утверждает, что значения, связанные с объектами, распределены хаотично.
  • z-оценка основана на вычислении гипотезы нулевой рандомизации. Дополнительные сведения о z-оценке см. в разделе Что такое z-оценка? Что такое p-значение?

  • Чем выше (или ниже) z-оценка, тем сильнее интенсивность кластеризации. Z-оценка около нуля не указывает ни на какое очевидное объединение в кластеры в области исследования. Положительная z-оценка указывает на объединение в кластеры высоких значений. Отрицательная z-оценка указывает на объединение в кластеры низких значений.

  • Когда Входной класс объектов не имеет проекции (т.е. когда координаты заданы в градусах, минутах и секундах), или когда в качестве выходной системы координат используется Географическая система координат, расстояния в этих случаях будут рассчитываться с помощью хордовых измерений. Измерения хордовых расстояний применяются постольку, поскольку они могут быть быстро вычислены и дают очень хорошие оценки истинных геодезических расстояний, по крайней мере, для точек, расстояние между которыми в пределах порядка тридцати градусов. Хордовые расстояния основаны на эллипсоиде вращения. Если взять две любые точки на поверхности Земли, то хордовым расстоянием между ними будет длина прямой линии, проходящей через трехмерное тело Земли и соединяющей эти две точки. Хордовые расстояния выражаются в метрах.

    Внимание:

    Следует обязательно производить проецирование ваших данных, если область исследования превышает 30 градусов. Хордовые расстояния не обеспечивают точных оценок геодезических расстояний, превышающих 30 градусов.

  • Когда при анализе используются хордовые расстояния, параметр Диапазон расстояний или пороговое расстояние, если он указывается, должен быть выражен в метрах.

  • В более ранних версиях, чем ArcGIS 10.2.1, вы бы увидели предупреждение о том, что выбранные вами параметры и системные настройки предполагают проведение вычислений на основе географических координат (градусы, минуты, секунды). Увидев это предупреждение, необходимо было произвести проецирование данных в Систему координат проекции для того, чтобы вычисление расстояний было точным. Однако, начиная с версии 10.2.1, этот инструмент рассчитывает хордовые расстояния для всех случаев, когда требуются вычисления в географической системе координат.

    Внимание:

    Из-за этого изменения имеется небольшая вероятность того, что вам потребуется изменить модели с участием этого инструмента, если эти модели были созданы до выхода версии ArcGIS 10.2.1, и если в эти модели включены жестко-запрограммированные значения параметров Географической системы координат. К примеру, если параметр расстояния установлен на что-то вроде 0,0025 градуса, то вам потребуется конвертировать это значение из градусов в метры и заново сохранить свою модель.

  • Для линейных или полигональных объектов, при расчете расстояний используются центроиды. Для мультиточек, полилиний или полигонов, состоящих их нескольких частей, центроид вычисляется с использованием средневзвешенного центра всех частей объекта. При определении весов точечные объекты имеют равный вес (1). Для линейных объектов это длина сегмента. Для полигональных – площадь.

  • Прежние версии:

    В ArcGIS 10 опция графического вывода результатов больше не является автоматической. Взамен этого, создается HTML файл, содержащий результаты. Чтобы просмотреть результаты, необходимо дважды щелкнуть HTML-файл в окне результатов. Возможно, потребуется перестроить пользовательские скрипты или инструменты моделирования, использующие этот инструмент, если они созданы в версии ArcGIS более ранней, чем версия 10. Чтобы модифицировать такие инструменты, откройте их, отключите опцию Отображать результаты графически и сохраните заново.

  • Этот инструмент при необходимости создает HTML-файл со сводным представлением результатов. HTML-файл не отображается автоматически в окне каталога. Если необходимо отобразить файлы HTML в Каталоге, выберите опцию меню Настроить, щелкнитеОпции ArcCatalog и выберите вкладку Типы файлов. Щелкните кнопку Новый тип и укажите HTML в качестве Расширения файла.

    Добавить файлы HTML в список файлов, который может быть показан в окне Каталога

  • Выбор параметра Определение пространственных взаимоотношений должен отражать внутренние отношения между пространственными объектами, которые вы анализируете. Чем более точно вы сможете смоделировать взаимодействие пространственных объектов в пространстве, тем более точные результаты вы получите. Рекомендации см. в разделе Выбор Концептуализации пространственных отношений: рекомендации. Ниже приводится несколько дополнительных советов:

    • FIXED_DISTANCE_BAND

      Значение по умолчанию для параметра Диапазон расстояний или пороговое расстояние гарантирует, что каждый объект имеет, по крайней мере, одного соседа, и это важно. Но часто значение, заданное по умолчанию, не будет наиболее подходящим расстоянием для вашего анализа. В разделе Выбор фиксированного расстояния приведены стратегии, которые помогут определить значение диапазона расстояний, подходящее для вашего анализа.

    • INVERSE_DISTANCE или INVERSE_DISTANCE_SQUARED

      Когда для параметра Диапазон расстояний или пороговое расстояние указано значение 0, все объекты считаются соседями всех других объектов. Когда этот параметр остается пустым, применяется пороговое значение по умолчанию.

      Веса для расстояний менее 1 становятся не стабильны после обращения. Следовательно, при взвешивании для объектов, разделенных менее чем одной единицей расстояния, получают вес 1.

      При использовании опции обратного расстояния (INVERSE_DISTANCEINVERSE_DISTANCE_SQUARED или ZONE_OF_INDIFFERENCE) любым двум совпадающим точкам придается значение веса 1 во избежание деления на 0. Это будет гарантировать, что объекты не исключены из анализа.

  • Для параметра Определение пространственных взаимоотношений при использовании инструментов Построить матрицу пространственных весов или Построить матрицу пространственных весов для сети доступны дополнительные опции, в том числе пространственно-временные отношения. Чтобы эффективно применять дополнительные опции, с помощью одного из этих инструментов создайте файл матрицы пространственных весов до выполнения анализа, выберите значение GET_SPATIAL_WEIGHTS_FROM_FILE для параметра Определение пространственных взаимоотношений, а для параметра Файл матрицы весов укажите путь к файлу с пространственными весами, который вы создали.

  • Слои карты можно использовать для определения Входного класса объектов. Если в слое есть выборка, только выбранные объекты будут включены в анализ.

  • Если указан Файл матрицы весов с расширением .swm, инструмент предполагает получение файла матрицы весов, созданного , либо Построить матрицу пространственных весов или Построить матрицу пространственных весов для сети , иначе инструмент ожидает файл матрицы весов в формате ASCII. В некоторых случаях, поведение различно в зависимости от типа использованной матрицы весов:

    • ASCII-файлы с матрицей пространственных весов:
      • Веса используются без изменений. Отсутствующие отношения объект к объекту рассматриваются как нули.
      • Если веса нормализованы, то вероятнее всего, что результаты будут непригодны для анализа выбранного набора. Если вам нужно выполнить анализ выбранного набора данных, конвертируйте ASCII-файл с матрицей весов в SWM-файл, считав данные ASCII-файла в таблицу, затем используйте опцию CONVERT_TABLE с инструментом Построить матрицу пространственных весов.
    • Матрица пространственных весов в формате SWM:
      • Если веса уже были нормализованы, то они будут нормализованы вновь для выбранного набора данных. В противном случае они будут использоваться без изменений.

  • Для выполнения анализа с ASCII-файлом с матрицей пространственных весов требуется большой объем памяти. При анализе более 5000 объектов ASCII-файл с матрицей пространственных весов следует конвертировать в SWM-файл. Сначала вы вставляете ваш ASCII-файл с весами в форматированную таблицу (например, с помощью Excel). Затем запустите инструмент Построить матрицу пространственных весов с CONVERT_TABLE для параметра Определение пространственных взаимоотношений. В результате будет создан SWM-файл с матрицей пространственных весов.

  • Дополнительную информацию о параметрах инструмента см. в справочной статье Моделирование пространственных отношений.

  • Внимание:

    При использовании шейп-файлов, помните, что в них нельзя хранить нулевые (null) значения. Инструменты или другие процедуры, создающие шейп-файлы из прочих входных данных, могут хранить значения NULL в виде 0 или оперировать ими как нулем. В некоторых случаях нули в шейп-файлах хранятся как очень маленькие отрицательные числа. Это может привести к неожиданным результатам. Дополнительные сведения см. в разделе Рекомендации по геообработке выходных данных шейп-файла.

Синтаксис

HighLowClustering(Input_Feature_Class, Input_Field, {Generate_Report}, Conceptualization_of_Spatial_Relationships, Distance_Method, Standardization, {Distance_Band_or_Threshold_Distance}, {Weights_Matrix_File})
ParameterОбъяснениеТип данных
Input_Feature_Class

Класс объектов, для которого будет рассчитываться глобальный индекс G.

Feature Layer
Input_Field

Числовое поле, которое должно быть оценено.

Field
Generate_Report
(Дополнительный)
  • NO_REPORT —Результаты не будут представлены в графической форме. Используется по умолчанию.
  • GENERATE_REPORT —Графическая сводка будет представлена в формате HTML-файла.
Boolean
Conceptualization_of_Spatial_Relationships

Определяет, как заданы пространственные отношения между объектами.

  • INVERSE_DISTANCE —Близко расположенные соседние объекты оказывают большее влияние на вычисления для целевого объекта, нежели удаленные объекты.
  • INVERSE_DISTANCE_SQUARED —То же самое, что и INVERSE_DISTANCE, только угол наклона острее, влияние объектов уменьшается быстрее, и лишь ближайшие соседи окажут существенное влияние на вычисления для рассматриваемого объекта.
  • FIXED_DISTANCE_BAND —Каждый объект анализируется в контексте соседних объектов. Соседние объекты в пределах указанного критического расстояния (Distance_Band_or_Threshold) получают вес 1 и влияют на расчеты для целевого объекта. Соседние объекты за пределами указанного критического расстояния получают вес 0 и не оказывают влияния на расчеты для целевого объекта.
  • ZONE_OF_INDIFFERENCE —Объекты в пределах указанного критического расстояния (Distance_Band_or_Threshold) получают вес 1 и влияют на расчеты для целевого объекта. Как только критическое расстояние превышено, веса (и влияние соседнего объекта на расчеты целевого объекта) начинают уменьшаться с расстоянием.
  • CONTIGUITY_EDGES_ONLY —Только соседние полигональные объекты, которые имеют смежную границу или перекрываются, повлияют на расчеты для целевого полигонального объекта.
  • CONTIGUITY_EDGES_CORNERS —Полигональные объекты, которые имеют общую границу, общий узел или перекрываются, повлияют на расчеты для целевого полигонального объекта.
  • GET_SPATIAL_WEIGHTS_FROM_FILE —Пространственные отношения определены в файле пространственных весов. Путь к файлу пространственных весов указан в параметре Weights_Matrix_File.
String
Distance_Method

Определяет, как рассчитываются расстояния от одного объекта до соседнего объекта.

  • EUCLIDEAN_DISTANCE —Расстояние по прямой линии между двумя точками (как ворона летает)
  • MANHATTAN_DISTANCE —Расстояние между двумя точками, измеренное вдоль осей, расположенных под прямым углом друг к другу (городские кварталы); рассчитывается суммированием абсолютных разностей между координатами х и у.
String
Standardization

Нормализация ряда рекомендуется, независимо от того, распределены ли объекты потенциально предвзято в зависимости от дизайна примера или от установленной схемы агрегации.

  • NONE —Нормализация ряда пространственных весов не применяется.
  • ROW —Пространственные веса нормализуются; каждый вес делится на его сумму ряда (сумму весов всех соседних объектов).
String
Distance_Band_or_Threshold_Distance
(Дополнительный)

Задает пороговое значение расстояния для параметров Обратное расстояние и Фиксированное расстояние. Объекты, расположенные вне указанной области, игнорируются при анализе этого объекта. Однако, для ZONE_OF_INDIFFERENCE влияние объектов, расположенных за пределами данного расстояния, сокращается с расстоянием, в то время как влияние тех объектов, которые располагаются в пределах порогового расстояния, распределяется равномерно. Введенное значение расстояния должно совпадать с расстоянием по выходной системе координат.

При использовании обратного расстояния для определения пространственных взаимоотношений значение 0 обозначает, что пороговое расстояние не применялось; когда данный параметр остается пустым, при анализе рассчитывается и применяется пороговое значение по умолчанию. Значение по умолчанию – это Евклидово расстояние, которое гарантирует каждому объекту как минимум 1 соседа.

Этот параметр не оказывает никакого влияния, если выбраны смежные полигоны (CONTIGUITY_EDGES_ONLY или CONTIGUITY_EDGES_CORNERS) либо пространственные взаимоотношения – GET_SPATIAL_WEIGHTS_FROM_FILE.

Double
Weights_Matrix_File
(Дополнительный)

Путь к файлу, который содержит веса, определяющие пространственные и, возможно, временные отношения между объектами.

File

Производные выходные данные

NameОбъяснениеТип данных
Observed_General_G

Статистика Наблюдаемое общее G.

Double
ZScore

z-оценка.

Double
PValue

p-значение.

Double
Report_File

Файл HTML с графическим представлением результатов.

Файл

Пример кода

HighLowClustering, пример 1 (окно Python)

Следующий скрипт окна Python демонстрирует, как использовать инструмент HighLowClustering.

import arcpy
arcpy.env.workspace = r"C:\data"
arcpy.HighLowClustering_stats("911Count.shp", "ICOUNT", "false", "GET_SPATIAL_WEIGHTS_FROM_FILE", "EUCLIDEAN_DISTANCE", "NONE", "#", "euclidean6Neighs.swm")
HighLowClustering, пример 2 (автономный скрипт)

Следующий автономный Python скрипт демонстрирует, как использовать инструмент HighLowClustering.

# Analyze the spatial distribution of 911 calls in a metropolitan area
# using the High/Low Clustering (Getis-Ord General G) tool
 
# Import system modules
import arcpy
 
# Set property to overwrite existing outputs
arcpy.env.overwriteOutput = True
 
# Local variables...
workspace = r"C:\Data"
try:
    # Set the current workspace (to avoid having to specify the full path to the feature classes each time)
    arcpy.env.workspace = workspace
    # Copy the input feature class and integrate the points to snap
    # together at 500 feet
    # Process: Copy Features and Integrate
    cf = arcpy.CopyFeatures_management("911Calls.shp", "911Copied.shp",
                         "#", 0, 0, 0)
    integrate = arcpy.Integrate_management("911Copied.shp #", "500 Feet")
    # Use Collect Events to count the number of calls at each location
    # Process: Collect Events
    ce = arcpy.CollectEvents_stats("911Copied.shp", "911Count.shp", "Count", "#")
    # Add a unique ID field to the count feature class
    # Process: Add Field and Calculate Field
    af = arcpy.AddField_management("911Count.shp", "MyID", "LONG", "#", "#", "#", "#",
                     "NON_NULLABLE", "NON_REQUIRED", "#",
                     "911Count.shp")
    
    cf = arcpy.CalculateField_management("911Count.shp", "MyID", "!FID!", "PYTHON")
    # Create Spatial Weights Matrix for Calculations
    # Process: Generate Spatial Weights Matrix... 
    swm = arcpy.GenerateSpatialWeightsMatrix_stats("911Count.shp", "MYID",
                        "euclidean6Neighs.swm",
                        "K_NEAREST_NEIGHBORS",
                        "#", "#", "#", 6,
                        "NO_STANDARDIZATION") 
    # Cluster Analysis of 911 Calls
    # Process: High/Low Clustering (Getis-Ord General G)
    hs = arcpy.HighLowClustering_stats("911Count.shp", "ICOUNT", 
                        "false", 
                        "GET_SPATIAL_WEIGHTS_FROM_FILE",
                        "EUCLIDEAN_DISTANCE", "NONE",
                        "#", "euclidean6Neighs.swm")
except:
    # If an error occurred when running the tool, print out the error message.
    print(arcpy.GetMessages())

Environments

  • Текущая рабочая область
  • Временная рабочая область
  • Выходная система координат
    Примечание:

    До начала анализа геометрия пространственных объектов проецируется в Выходную систему координат. Во всех математических вычислениях учитывается пространственная привязка Выходной системы координат. Если выходная система координат выражена в градусах, минутах и секундах, то геодезические расстояния рассчитываются с помощью хордовых расстояний.

  • Географические преобразования

Информация о лицензиях

  • Basic: Да
  • Standard: Да
  • Advanced: Да

Связанные разделы

  • Обзор группы инструментов Анализ структурных закономерностей
  • Моделирование пространственных отношений
  • Что такое z-оценка? Что такое p-значение?
  • Пространственная автокорреляция (Глобальный индекс Морана I)
  • Анализ горячих точек (Getis-Ord Gi*)
  • Пространственные веса
  • Как работает инструмент Кластеризация с высокими/низкими значениями (Общий показатель Getis-Ord G)

ArcGIS Desktop

  • На главную
  • Документация
  • Поддержка

ArcGIS Platform

  • ArcGIS Online
  • ArcGIS Desktop
  • ArcGIS Enterprise
  • ArcGIS for Developers
  • ArcGIS Solutions
  • ArcGIS Marketplace

Об Esri

  • О нас
  • Карьера
  • Блог Esri
  • Конференция пользователей
  • Саммит разработчиков
Esri
Расскажите нам, что вы думаете.
Copyright © 2020 Esri. | Конфиденциальность | Правовая информация