Сводка
Выполняет глобальный Метод наименьших квадратов (МНК) для линейной регрессии, чтобы спрогнозировать или смоделировать зависимую переменную на основе ее отношений с независимыми переменными.
Доступ к результатам этого инструмента (в том числе дополнительному PDF-файлу отчета) можно получить в окне Результаты. Если отключить обработку в фоновом режиме, результаты также будут показаны в диалоговом окне Ход процесса.
Подробнее о том, как работает Метод наименьших квадратов (МНК)
Иллюстрация
Использование
-
Основным результатом работы этого инструмента является файл отчета, который записывается в окне Результаты. Если щелкнуть правой кнопкой мыши запись Сообщения в окне Результаты и выбрать Вид, итоговый отчет инструмента Исследовательская регрессия можно будет просмотреть в диалоговом окне Сообщение.
-
Инструмент МНК также создает выходной класс объектов и дополнительные таблицы с информацией о коэффициентах и диагностике. Все это доступно в окне Результаты. Выходной класс объектов автоматически добавляется в таблицу содержания со схемой отображения горячих/холодных точек, применяемой к невязкам моделей. Полное пояснение по каждому результату см. в разделе Интерпретация результатов по МНК.
-
Результаты регрессии МНК являются заслуживающими доверия только в том случае, если ваши данные и модель регрессии удовлетворяет всем допущениям, соответствующим этому методу. Проанализируйте таблицу Распространенные проблемы, последствия и решения регрессии в Основах анализа регрессии, чтобы гарантировать, что ваша модель должным образом определена.
-
Зависимые и независимые переменные должны храниться в числовых полях, содержащих разнообразие значений. МНК не может работать, когда все переменные имеют одинаковые значения (например, все значения для поля равны 9.0). Линейные методы регрессии, такие, как МНК, не являются подходящими для прогнозирования двоичных результатов (например, все значения для зависимой переменной равны или 1 или 0).
-
Поле Unique ID связывает прогнозированные значения в модели с каждым объектом. Следовательно, значения поля Unique ID должны быть уникальными для каждого объекта и, как правило, это поле должно быть постоянным полем, принадлежащим классу объектов. Если у вас нет поля Unique ID, вы можете легко создать его путем добавления нового целого поля в вашу таблицу класса объектов и введения значений поля, аналогичных полю FID/OID. Вы не можете использовать поле FID/OID напрямую в параметре Уникальный ID.
-
Всякий раз, когда есть статистически значимая пространственная автокорреляция невязок регрессии, модель МНК будут считаться неопределенной. Следовательно, результаты регрессии по МНК будут ненадежными. Примените инструмент Пространственная автокорреляция к невязкам вашей регрессии, чтобы оценить потенциальные проблемы. Статистически значимая пространственная автокорреляция невязок регрессии почти всегда указывает на один или несколько недостающих ключевых независимых переменных модели.
-
Визуально оцените все очевидные смещения прогнозируемых значений в большую и меньшую сторону в невязках вашей регрессии, чтобы увидеть, дают ли они представления о потенциальных недостающих переменных в вашей регрессионной модели. Иногда проведение Анализа горячих точек по невязкам помогает визуализировать пространственную кластеризацию отклонений прогнозируемых значений в большую и меньшую сторону.
-
Если неопределенность является результатом попытки моделировать нестационарные переменные, используя глобальную модель (МНК – это глобальная модель), то может быть использована Географически взвешенная регрессия для повышения точности прогнозирования и лучшего понимания нестационарности (региональной вариабельности) в ваших независимых переменных.
-
Если результатом вычисления является бесконечность или неопределенность, результат для файлов, которые не являются шейп-файлами, будет Null; для шейп-файлов результат будет – DBL_MAX (например, -1.7976931348623158e+308).
-
Итоговые результаты диагностики модели записываются в итоговый отчет по МНК и в дополнительную выходную таблицу результатов диагностики. Обе записи включают результаты диагностики исправленного Информационного критерия Akaike (AICc), коэффициент определения, соединенную F-статистику, статистику Вальда, стьюдентизированную Кенкером статистику Бреуша-Пагана и статистику Жарке-Бера. Диагностическая таблица также включает нескорректированные значения AIC и S-квадрат.
-
Дополнительный коэффициент и/или диагностические выходные таблицы, если они уже существуют, будут переписаны, если включена опция перезаписи результатов операций геообработки.
-
Этот инструмент при необходимости создает PDF-файл отчета со сводным представлением результатов. PDF-файл не отображается автоматически в окне Каталога. Чтобы PDF-файлы отображались в окне Каталога, откройте приложение ArcCatalog, выберите опцию меню Настройка, щелкните Опции ArcCatalog и выберите закладку Типы файлов. Нажмите кнопку Новый тип и укажите PDF, как показано ниже, для параметра Расширение файла.
-
На компьютерах с языковыми пакетами ArcGIS для арабского языка и других языков, которые читаются справа налево, в PDF-файле выходного отчета может отсутствовать текст или элементы форматирования. Эти проблемы описаны в этой статье.
-
Слои карты можно использовать для определения Входного класса объектов. Если в слое есть выборка, только выбранные объекты будут включены в анализ.
Синтаксис
arcpy.stats.OrdinaryLeastSquares(Input_Feature_Class, Unique_ID_Field, Output_Feature_Class, Dependent_Variable, Explanatory_Variables, {Coefficient_Output_Table}, {Diagnostic_Output_Table}, {Output_Report_File})
Параметр | Объяснение | Тип данных |
Input_Feature_Class | Класс пространственных объектов, содержащий зависимые и независимые переменные для анализа. | Feature Layer |
Unique_ID_Field | Целое поле, содержащее разное значение для каждого объекта в Входном классе объектов. | Field |
Output_Feature_Class | Выходной класс объектов с оценками зависимых переменных и невязками. | Feature Class |
Dependent_Variable | Числовое поле, содержащее значения, для которых вы пытаетесь моделировать. | Field |
Explanatory_Variables [Explanatory_Variables,...] | Перечень полей, представляющих независимые переменные в вашей регрессионной модели. | Field |
Coefficient_Output_Table (Дополнительный) | Полный путь к дополнительной таблице, в которую будут записаны коэффициенты модели, стандартизированные коэффициенты, стандартные ошибки и вероятности для каждой независимой переменной. | Table |
Diagnostic_Output_Table (Дополнительный) | Полный путь к дополнительной таблице, в которую будут записаны суммарные диагностические параметры модели. | Table |
Output_Report_File (Дополнительный) | Полный путь к дополнительному PDF-файлу, создаваемому инструментом. Этот файл отчета включает данные диагностики модели, графические данные и примечания, которые помогают интерпретировать результаты регрессии по МНК. | File |
Пример кода
OrdinaryLeastSquares, пример 1 (окно Python)
В следующем скрипте окна Python показано, как используется инструмент OrdinaryLeastSquares.
import arcpy
arcpy.env.workspace = r"c:\data"
arcpy.OrdinaryLeastSquares_stats("USCounties.shp", "MYID","olsResults.shp",
"GROWTH","LOGPCR69;SOUTH;LPCR_SOUTH;PopDen69",
"olsCoefTab.dbf","olsDiagTab.dbf")
OrdinaryLeastSquares, пример 2 (автономный скрипт Python)
Следующий автономный скрипт Python демонстрирует, как использовать инструмент OrdinaryLeastSquares.
# Analyze the growth of regional per capita incomes in US
# Counties from 1969 -- 2002 using Ordinary Least Squares Regression
# Import system modules
import arcpy
# Set property to overwrite existing outputs
arcpy.env.overwriteOutput = True
# Local variables...
workspace = r"C:\Data"
try:
# Set the current workspace (to avoid having to specify the full path to the feature classes each time)
arcpy.env.workspace = workspace
# Growth as a function of {log of starting income, dummy for South
# counties, interaction term for South counties, population density}
# Process: Ordinary Least Squares...
ols = arcpy.OrdinaryLeastSquares_stats("USCounties.shp", "MYID",
"olsResults.shp", "GROWTH",
"LOGPCR69;SOUTH;LPCR_SOUTH;PopDen69",
"olsCoefTab.dbf",
"olsDiagTab.dbf")
# Create Spatial Weights Matrix (Can be based on input or output FC)
# Process: Generate Spatial Weights Matrix...
swm = arcpy.GenerateSpatialWeightsMatrix_stats("USCounties.shp", "MYID",
"euclidean6Neighs.swm",
"K_NEAREST_NEIGHBORS",
"#", "#", "#", 6)
# Calculate Moran's Index of Spatial Autocorrelation for
# OLS Residuals using a SWM File.
# Process: Spatial Autocorrelation (Morans I)...
moransI = arcpy.SpatialAutocorrelation_stats("olsResults.shp", "Residual",
"NO_REPORT", "GET_SPATIAL_WEIGHTS_FROM_FILE",
"EUCLIDEAN_DISTANCE", "NONE", "#",
"euclidean6Neighs.swm")
except:
# If an error occurred when running the tool, print out the error message.
print(arcpy.GetMessages())
Параметры среды
Информация о лицензиях
- Basic: Да
- Standard: Да
- Advanced: Да
Связанные разделы
- Обзор группы инструментов Моделирование пространственных отношений
- Основы регрессионного анализа
- Интерпретация результатов МНК
- Географически взвешенная регрессия
- Пространственная автокорреляция (Глобальный индекс Морана I)
- Анализ горячих точек (Getis-Ord Gi*)
- Что такое z-оценка? Что такое p-значение?
- Как работает регрессия OLS (МНК – метод наименьших квадратов)
- Что вам не говорят о регрессионном анализе
- Исследовательская регрессия
- Интерпретация результатов инструмента Исследовательская регрессия
- Как работает инструмент Исследовательская регрессия (Exploratory Regression)