ArcGIS for Desktop

  • Dokumentation
  • Preise
  • Support

  • My Profile
  • Hilfe
  • Sign Out
ArcGIS for Desktop

ArcGIS Online

Die Mapping-Plattform für Ihre Organisation

ArcGIS for Desktop

Ein vollständiges professionelles GIS

ArcGIS for Server

GIS in Ihrem Unternehmen

ArcGIS for Developers

Werkzeuge zum Erstellen standortbezogener Apps

ArcGIS Solutions

Kostenlose Karten- und App-Vorlagen für Ihre Branche

ArcGIS Marketplace

Rufen Sie Apps und Daten für Ihre Organisation ab.

  • Dokumentation
  • Preise
  • Support
Esri
  • Anmelden
user
  • Eigenes Profil
  • Abmelden

Help

  • Startseite
  • Erste Schritte
  • Karte
  • Analysieren
  • Verwalten von Daten
  • Werkzeuge
  • Mehr...

Understanding universal kriging

Mit der Geostatistical Analyst-Lizenz verfügbar.

Universal kriging assumes the model

Z(s) = µ(s) + ε(s),

where µ(s) is some deterministic function. For example, in the following figure, which has the same data that was used for ordinary kriging concepts, the observed data is given by the solid circles.

Universal kriging

A second-order polynomial is the trend—long dashed line—which is µ(s). If you subtract the second-order polynomial from the original data, you obtain the errors, ε(s), which are assumed to be random. The mean of all ε(s) is 0. Conceptually, the autocorrelation is now modeled from the random errors ε(s). Of course, you could have fit a linear trend, a cubic polynomial, or any number of other functions. The figure above looks just like a polynomial regression from any basic statistics course. In fact, that is what universal kriging is. You are doing regression with the spatial coordinates as the explanatory variables. However, instead of assuming the errors ε(s) are independent, you model them to be autocorrelated. The advice is the same as for ordinary kriging: there is no way to decide, based on the data alone, on the proper decomposition.

Universal kriging can use either semivariograms or covariances (which are the mathematical forms you use to express autocorrelation), use transformations, and allow for measurement error.

Verwandte Themen

  • Using universal kriging to create a prediction map
  • Using universal kriging to create a prediction standard error map
Feedback zu diesem Thema?

ArcGIS for Desktop

  • Startseite
  • Dokumentation
  • Preise
  • Support

ArcGIS Plattform

  • ArcGIS Online
  • ArcGIS for Desktop
  • ArcGIS for Server
  • ArcGIS for Developers
  • ArcGIS Solutions
  • ArcGIS Marketplace

Über Esri

  • Über uns
  • Karriere
  • Insider-Blog
  • User Conference
  • Developer Summit
Esri
© Copyright 2016 Environmental Systems Research Institute, Inc. | Datenschutz | Rechtliches