Mit der Spatial Analyst-Lizenz verfügbar.
Werkzeuge zur Segmentierung und Klassifizierung bieten eine Möglichkeit, Features von auf Objekten basierenden Bilddaten zu extrahieren. Diese Objekte werden über eine Bildsegmentierung erstellt, bei der dicht beieinander liegende Pixel, die ähnliche Spektraleigenschaften aufweisen, in einem Segment gruppiert werden. Segmente mit bestimmten Formen, Spektral- und räumlichen Eigenschaften lassen sich danach weiter in Objekte gruppieren. Die Objekte können dann in Klassen zusammengefasst werden, die reale Features auf der Erdoberfläche darstellen. Bildklassifizierungen lassen sich auch für Pixel-Bilddaten ausführen, beispielsweise ursprünglich unsegmentierte Bilder.
Die objektorientierte Feature-Extraktion wird von Werkzeugen unterstützt, die drei Funktionsbereiche abdecken: Bildsegmentierung, Ableitung von Analysedaten zu den Segmenten und Klassifizierung. Die ausgegebenen Daten eines Werkzeugs dienen als Eingabe für die nachfolgenden Werkzeuge, wobei das Ziel darin besteht, eine sinnvolle objektorientierte Feature-Class-Karte zu erstellen. Der objektorientierte Prozess ähnelt dem herkömmlichen pixelbasierten Bildklassifizierungsprozess, bei dem geordnete und ungeordnete Klassifizierungstechniken zum Einsatz kommen. Statt Pixeln werden in diesem Prozess Segmente – die man sich als Superpixel vorstellen kann – klassifiziert. Jedes Segment (oder Superpixel) liegt in Form eines Satzes von Attributen vor, anhand dessen die Klassifizierungswerkzeuge das klassifizierte Bild erstellen.
Nachstehend wird ein Geoverarbeitungsmodell beschrieben, in dem die Abläufe bei der objektorientierten Feature-Extraktion dargestellt werden.
Bildsegmentierung
Die Bildsegmentierung basiert auf dem Mean Shift-Ansatz. Bei dieser Technik wird ein bewegliches Fenster verwendet, mit dem ein durchschnittlicher Pixelwert berechnet wird, um zu ermitteln, welche Pixel in jedem Segment enthalten sein sollten. Während sich das Fenster über das Bild bewegt, wird der Wert ständig neu berechnet, um die Eignung jedes einzelnen Segments sicherzustellen. Daraus ergibt sich eine Gruppierung von Bildpixeln in einem Segment, das sich durch eine Durchschnittsfarbe auszeichnet.
Das Werkzeug Mean Shift-Segmentierung akzeptiert beliebige von Esri unterstützte Raster und gibt ein segmentiertes 3-Band, 8-Bit-Farb-Bild aus, dessen Schlüsseleigenschaft auf Segmentiert festgelegt wird. Die Segmentmerkmale des Bildes sind von drei Parametern abhängig: Spektraldetail, räumliches Detail und minimale Segmentgröße. Sie können den Detailumfang der Merkmale eines Features von Interesse beliebig ändern. Wenn Sie beispielsweise vor allem an undurchlässigen Features statt an einzelnen Gebäuden interessiert sind, stellen Sie den Parameter für räumliche Details auf einen niedrigen Wert ein; je niedriger der Wert, desto mehr Glättung und weniger Details erhalten Sie.
Nachstehende Abbildung zeigt eine segmentierte WorldView-2-Szene (mit freundlicher Genehmigung von DigitalGlobe) in Infrarot. Das segmentierte Bild enthält ähnliche Regionen, die nahezu fleckenlos gruppiert sind. Im Gegensatz zu einer herkömmlichen Klassifizierung, die zahlreiche zufällige, über das gesamte Bild verstreute Pixel enthalten kann, wird die Fläche generalisiert, um alle Features als zusammenhängenden Bereich darzustellen.
Referenzliste:
- D. Comanicu, P. Meer: Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Machine Intell., Mai 2002.
- P. Meer, B. Georgescu: Edge detection with embedded confidence. IEEE Trans. Pattern Anal. Machine Intell., 28, 2001.
- C. Christoudias, B. Georgescu, P. Meer: Synergism in low level vision. 16. Internationale Konferenz zum Thema Mustererkennung, Track 1 - Computersehen und Robotik, Quebec City, Kanada, August 2001.
Trainingsgebietdaten
Bei der Erfassung von Trainingsgebietdaten geht es darum, eine Gruppe von Pixeln mit bestimmten Eigenschaften aus dem Bild abzugrenzen. Anschließend erfolgt ein statistischer Vergleich aller Pixel des Bildes mit der Klassendefinition, die Sie für eine bestimmte Feature-Class angegeben und ihr zugeordnet haben. Pixel, die zu keiner definierten Klasse gehören, sind nicht definiert. Trainingsgebiete sollten keine unerwünschten Pixel enthalten, die der Sie interessierenden Klasse nicht angehören. Wenn Sie für jede Klasse ausschließlich die korrekten Pixel auswählen, sieht das Ergebnis häufig wie eine normale Gaußsche Glocke aus. Achten Sie darauf, dass Ihr als Trainingsgebiet gewähltes Polygon stets eine aussagekräftige Anzahl an Pixeln enthält. Ein 10x10-Pixelblock entspricht 100 Pixeln, was eine vernünftige, statistisch signifikante Größe für ein Trainingspolygon darstellt.
Ein segmentiertes Raster-Dataset unterscheidet sich von einem Pixelbild darin, dass jedes Segment (zuweilen auch Super-Pixel genannt) durch einen Durchschnittsfarbwert dargestellt wird. Ein Trainingsgebiet-Polygon mit 100 Pixeln aus einem Bild lässt sich leicht erstellen, viel schwieriger ist es jedoch, 100 Super-Pixel aus einem segmentierten Raster-Dataset zu erhalten.
Parametrische Klassifikatoren, darunter der Klassifikator für die maximale Wahrscheinlichkeit, benötigen eine statistisch signifikante Anzahl von Stichproben, um eine aussagekräftige Wahrscheinlichkeitsdichtefunktion erstellen zu können. Um statistisch signifikante Stichproben zu erhalten, sollten Sie mit mindestens 20 Stichproben pro Klasse arbeiten. Das heißt, dass für jede Klasse, z. B. nackter Erdboden, blattlose Bäume oder Asphalt, mindestens 20 Segmente vorhanden sein sollten, um die jeweilige Feature-Class zu definieren.
Glätten wirkt sich auf die Größe und Homogenität eines Segments aus. Ein segmentiertes Raster, für das ein hoher Glättungsfaktor gewählt wurde, enthält sicherlich umfangreiche Segmente, in deren Quellbild verschiedene Typen von Features vorhanden sind. Aufgrund des Glättungseffekts empfiehlt es sich, Trainingsgebiete aus dem segmentierten Raster-Dataset zu sammeln. Damit lässt sich sicherstellen, dass die Trainingsgebiete aus unterschiedlichen Einzelsegmenten stammen.
Analytische Informationen
Die dem segmentierten Layer zugeordneten analytischen Informationen werden vom Klassifikator-Trainingswerkzeug berechnet und sind vom angegebenen Klassifikatortyp abhängig. Verwenden Sie das zur Klassifizierung Ihrer Daten geeignete Trainingswerkzeug:
Klassifikator | Beschreibung |
---|---|
ISO-Cluster-Klassifikator trainieren | Erzeugen einer Esri Classifier Definition (.ecd)-Datei anhand der ISO-Cluster-Klassifizierung. |
Maximum-Likelihood-Klassifikator trainieren | Erstellen einer Esri Classifier Definition (.ecd)-Datei mithilfe der Definition für die Klassifikation mit dem Maximum-Likelihood-Klassifikator. |
Support Vector Machine-Klassifikator trainieren | Erstellen einer Esri Classifier Definition (.ecd)-Datei mithilfe der Definition für die Klassifikation mit Support Vector Machine. Mit dem SVM-Klassifikator steht eine moderne, leistungsfähige Methode für die geordnete Klassifizierung zur Verfügung, mit der sich eine segmentierte Raster-Eingabe oder ein Standardbild verarbeiten lassen. Dies ist eine relativ neue Klassifizierungsmethode, die von Forschern rege genutzt wird. |
Die Trainingswerkzeuge verarbeiten das zu klassifizierende Bild, einen optionalen segmentierten Layer und Polygon-Daten der Trainings-Site, um die entsprechende Datei für Klassifikator-Definition zu erstellen. Die Trainingsgebietsdatei wird mithilfe der vorhandenen Werkzeugleiste Klassifizierung im Trainingsgebiet-Manager erstellt. Die Standarddatei für das Trainingsgebiet wird in den geordneten Klassifikatoren verwendet.
Die Datei für Klassifikator-Definition (.ecd) basiert auf den angegebenen Klassifikatoren und Interessenattributen, weshalb für die jeweiligen Klassifikatoren, Eingabe-Raster und -Attribute eine individuelle Datei für Klassifikator-Definition erzeugt wird. Sie ähnelt einer Klassifizierungs-Signaturdatei, ist aber allgemeiner gehalten, da sie jeden beliebigen Klassifikator unterstützt, und die erstellte Datei für Klassifikator-Definition ist auf die jeweilige Kombination aus Quelldaten und Klassifikator speziell zugeschnitten.
Die Datei für Klassifikator-Definition kann auf jedem beliebigen Raster basieren, wobei die Raster nicht zwingend segmentiert sein müssen. Beispielsweise wird ein segmentiertes Raster aus IKONOS-Multispektraldaten abgeleitet, und deren Statistik- und Analyseattributdaten lassen sich aus einem 6-Band-Pan-Sharpened WorldView-2-Bild, QuickBird-, GeoEye-, Pleiades-, RapidEye- oder Landsat 8-Bild erzeugen. Diese Flexibilität ermöglicht Ihnen die einmalige Ableitung des segmentierten Rasters und Generierung der Dateien für Klassifikator-Definition und daraus resultierenden klassifizierten Feature-Karten aus einer Vielzahl von Bildquellen, je nach Ihrer Anwendung.
Segmentattribute berechnen
Bei den vorstehend beschriebenen Werkzeugen handelt es sich um die gebäuchlichsten Werkzeuge im objektorientierten Arbeitsablauf. Ein weiteres Werkzeug, Segmentattribute berechnen, unterstützt Einspeisung und Export segmentierter Raster in bzw. aus Drittanwendungen. Dieses Werkzeug berechnet anhand eines segmentierten Bilds, einer Trainingsgebietsdatei und eines optionalen zweiten Rasters die Attribute jedes Segments und gibt diese Informationen in Form eines Index-Rasters mit zugeordneter Attributtabelle aus.
Zweck dieses Werkzeugs ist, eine weitere Analyse des segmentierten Rasters zu ermöglichen. Die Attribute lassen sich in einer Statistik- oder Grafikanwendung Dritter analysieren oder als Eingabe für zusätzliche Klassifikatoren, die von Esri nicht unterstützt werden, verwenden. Außerdem unterstützt dieses Werkzeug die Einspeisung eines segmentierten Rasters aus Datenpaketen Dritter, was die Anwendungsmöglichkeiten und Flexibilität von Esri erweitert, indem Daten und Anwendungspakete Dritter genutzt werden können.
Klassifizierung
Das Werkzeug Raster klassifizieren führt eine Bildklassifizierung gemäß der Esri Datei für Klassifikator-Definition aus. In das Werkzeug eingegeben werden u. a. das zu klassifizierende Bild, das optionale segmentierte Raster (wie ein anderes Raster-Dataset oder ein Layer, z. B. ein DEM) sowie eine Datei für Klassifikator-Definition zur Erstellung des klassifizierten Raster-Datasets. Beachten Sie, dass das Werkzeug Raster klassifizieren alle unterstützten Klassifikatoren enthält. Die Auswahl des passenden Klassifikators erfolgt anhand der in der Datei für Klassifikator-Definition enthaltenen Eigenschaften und Informationen. Somit wird durch die Datei für Klassifikator-Definition, die durch ISO-Cluster-Klassifikator trainieren, Maximum-Likelihood-Klassifikator trainieren oder Support Vector Machine-Klassifikator trainieren erstellt wurde, bei Ausführung von Raster klassifizieren der entsprechende Klassifikator aktiviert.