ArcGIS Desktop

  • Dokumentation
  • Support

  • My Profile
  • Hilfe
  • Sign Out
ArcGIS Desktop

ArcGIS Online

Die Mapping-Plattform für Ihre Organisation

ArcGIS Desktop

Ein vollständiges professionelles GIS

ArcGIS Enterprise

GIS in Ihrem Unternehmen

ArcGIS for Developers

Werkzeuge zum Erstellen standortbezogener Apps

ArcGIS Solutions

Kostenlose Karten- und App-Vorlagen für Ihre Branche

ArcGIS Marketplace

Rufen Sie Apps und Daten für Ihre Organisation ab.

  • Dokumentation
  • Support
Esri
  • Anmelden
user
  • Eigenes Profil
  • Abmelden

ArcMap

  • Startseite
  • Erste Schritte
  • Karte
  • Analysieren
  • Verwalten von Daten
  • Werkzeuge
  • Erweiterungen

Understanding indicator kriging

Mit der Geostatistical Analyst-Lizenz verfügbar.

Indicator kriging assumes the model

I(s) = µ + ε(s),

where µ is an unknown constant and I(s) is a binary variable. The creation of binary data may be through the use of a threshold for continuous data, or it may be that the observed data is 0 or 1. For example, you might have a sample that consists of information on whether or not a point is forest or nonforest habitat, where the binary variable indicates class membership. Using binary variables, indicator kriging proceeds the same as ordinary kriging.

In the following figure, the data has been converted to binary values using the threshold shown in Understanding thresholds.

Threshold

The observed binary data is given by the open squares. The unknown mean for all indicator variables is shown by the dashed line, and it is µ. This can be compared to ordinary kriging. As with ordinary kriging, you assume that ε(s) is autocorrelated. Notice that because the indicator variables are 0 or 1, the interpolations will be between 0 and 1, and predictions from indicator kriging can be interpreted as probabilities of the variable being 1 or being in the class that is indicated by 1. If a threshold was used to create the indicator variable, the resulting interpolation map would show the probabilities of exceeding (or being below) the threshold.

It is possible to create several indicator variables for the same dataset by choosing multiple thresholds. In this case, one threshold creates the primary indicator variable, and the other indicator variables are used as secondary variables in cokriging.

Indicator kriging can use either semivariograms or covariances, which are the mathematical forms you use to express autocorrelation.

Verwandte Themen

  • Understanding thresholds
  • Using indicator kriging to create a probability map

ArcGIS Desktop

  • Startseite
  • Dokumentation
  • Support

ArcGIS Plattform

  • ArcGIS Online
  • ArcGIS Desktop
  • ArcGIS Enterprise
  • ArcGIS for Developers
  • ArcGIS Solutions
  • ArcGIS Marketplace

Über Esri

  • Über uns
  • Karriere
  • Insider-Blog
  • User Conference
  • Developer Summit
Esri
Wir sind an Ihrer Meinung interessiert.
© Copyright 2016 Environmental Systems Research Institute, Inc. | Datenschutz | Rechtliches