ArcGIS Desktop

  • ArcGIS Pro
  • ArcMap

  • My Profile
  • Hilfe
  • Sign Out
ArcGIS Desktop

ArcGIS Online

Die Mapping-Plattform für Ihre Organisation

ArcGIS Desktop

Ein vollständiges professionelles GIS

ArcGIS Enterprise

GIS in Ihrem Unternehmen

ArcGIS for Developers

Werkzeuge zum Erstellen standortbezogener Apps

ArcGIS Solutions

Kostenlose Karten- und App-Vorlagen für Ihre Branche

ArcGIS Marketplace

Rufen Sie Apps und Daten für Ihre Organisation ab.

  • Dokumentation
  • Support
Esri
  • Anmelden
user
  • Eigenes Profil
  • Abmelden

ArcMap

  • Startseite
  • Erste Schritte
  • Karte
  • Analysieren
  • Verwalten von Daten
  • Werkzeuge
  • Erweiterungen

SearchNeighborhoodStandardCircular

  • Zusammenfassung
  • Syntax
  • Eigenschaften
  • Codebeispiel

Zusammenfassung

The SearchNeighborhoodStandardCircular class can be used to define the search neighborhood for Empirical Bayesian Kriging, IDW, Local Polynomial Interpolation, and Radial Basis Functions.

Learn more about search neighborhoods

Syntax

SearchNeighborhoodStandardCircular ({radius}, {angle}, {nbrMax}, {nbrMin}, {sectorType})
ParameterErklärungDatentyp
radius

The distance, in map units, specifying the length of the radius of the searching circle.

Double
angle

The angle of the search circle. This parameter will only affect the angle of the sectors.

Double
nbrMax

Maximum number of neighbors, within the search ellipse, to use when making the prediction.

Long
nbrMin

Minimum number of neighbors, within the search ellipse, to use when making the prediction.

Long
sectorType

The searching ellipse can be divided into 1, 4, 4 with an offset of 45º, or 8 sectors.

String

Eigenschaften

EigenschaftErklärungDatentyp
angle
(Lesen und schreiben)

The angle of the search ellipse.

Double
radius
(Lesen und schreiben)

The distance, in map units, specifying the length of the radius of the searching circle.

Double
nbrMax
(Lesen und schreiben)

Maximum number of neighbors, within the search ellipse, to use when making the prediction.

Long
nbrMin
(Lesen und schreiben)

Minimum number of neighbors, within the search ellipse, to use when making the prediction.

Long
nbrType
(Nur lesen)

The neighborhood type: Smooth or Standard.

String
sectorType
(Lesen und schreiben)

The searching ellipse can be divided into 1, 4, 4 with an offset of 45º, or 8 sectors.

String

Codebeispiel

SearchNeighborhoodSmoothCircular (Python window)

An example of SearchNeighborhoodStandardCircular with Empirical Bayesian Kriging to produce an output raster.

import arcpy
arcpy.EmpiricalBayesianKriging_ga("ca_ozone_pts", "OZONE", "outEBK", "C:/gapyexamples/output/ebkout",
                                  10000, "NONE", 50, 0.5, 100,
                                  arcpy.SearchNeighborhoodStandardCircular(300000, 0, 15, 10, "ONE_SECTOR"),
                                  "PREDICTION", "", "", "")
SearchNeighborhoodSmoothCircular (stand-alone script)

An example of SearchNeighborhoodStandardCircular with Empirical Bayesian Kriging to produce an output raster.

# Name: EmpiricalBayesianKriging_Example_02.py
# Description: Bayesian kriging approach whereby many models created around the
#   semivariogram model estimated by the restricted maximum likelihood algorithm is used.
# Requirements: Geostatistical Analyst Extension
# Author: ESRI

# Import system modules
import arcpy

# Set environment settings
arcpy.env.workspace = "C:/gapyexamples/data"

# Set local variables
inPointFeatures = "ca_ozone_pts.shp"
zField = "ozone"
outLayer = "outEBK"
outRaster = "C:/gapyexamples/output/ebkout"
cellSize = 10000.0
transformation = "NONE"
maxLocalPoints = 50
overlapFactor = 0.5
numberSemivariograms = 100
# Set variables for search neighborhood
radius = 300000
angle = 0
maxNeighbors = 15
minNeighbors = 10
sectorType = "ONE_SECTOR"
searchNeighbourhood = arcpy.SearchNeighborhoodStandardCircular(radius,
                                                       angle, maxNeighbors,
                                                       minNeighbors, sectorType)
outputType = "PREDICTION"
quantileValue = ""
thresholdType = ""
probabilityThreshold = ""
# Check out the ArcGIS Geostatistical Analyst extension license
arcpy.CheckOutExtension("GeoStats")

# Execute EmpiricalBayesianKriging
arcpy.EmpiricalBayesianKriging_ga(inPointFeatures, zField, outLayer, outRaster,
                                  cellSize, transformation, maxLocalPoints, overlapFactor, numberSemivariograms,
                                  searchNeighbourhood, outputType, quantileValue, thresholdType, probabilityThreshold)

ArcGIS Desktop

  • Startseite
  • Dokumentation
  • Support

ArcGIS Plattform

  • ArcGIS Online
  • ArcGIS Desktop
  • ArcGIS Enterprise
  • ArcGIS for Developers
  • ArcGIS Solutions
  • ArcGIS Marketplace

Über Esri

  • Über uns
  • Karriere
  • Esri Blog
  • User Conference
  • Developer Summit
Esri
Wir sind an Ihrer Meinung interessiert.
Copyright © 2019 Esri. | Datenschutz | Rechtliches