ArcGIS Desktop

  • ArcGIS Pro
  • ArcMap

  • My Profile
  • Hilfe
  • Sign Out
ArcGIS Desktop

ArcGIS Online

Die Mapping-Plattform für Ihre Organisation

ArcGIS Desktop

Ein vollständiges professionelles GIS

ArcGIS Enterprise

GIS in Ihrem Unternehmen

ArcGIS for Developers

Werkzeuge zum Erstellen standortbezogener Apps

ArcGIS Solutions

Kostenlose Karten- und App-Vorlagen für Ihre Branche

ArcGIS Marketplace

Rufen Sie Apps und Daten für Ihre Organisation ab.

  • Dokumentation
  • Support
Esri
  • Anmelden
user
  • Eigenes Profil
  • Abmelden

ArcMap

  • Startseite
  • Erste Schritte
  • Karte
  • Analysieren
  • Daten verwalten
  • Werkzeuge
  • Erweiterungen

Maximum-Likelihood-Klassifikator trainieren

Mit der Spatial Analyst-Lizenz verfügbar.

  • Zusammenfassung
  • Verwendung
  • Syntax
  • Codebeispiel
  • Umgebungen
  • Lizenzinformationen

Zusammenfassung

Generiert eine Esri Classifier Definition (.ecd)-Datei mithilfe der Klassifizierungsdefinition des Maximum-Likelihood-Klassifikators.

Verwendung

  • Um die Maximum-Likelihood-Klassifizierung abzuschließen, verwenden Sie dasselbe Eingabe-Raster und die Ausgabe-.ecd-Datei aus diesem Werkzeug im Werkzeug Raster klassifizieren.

  • Das Eingabe-Raster kann ein beliebiges von Esri unterstütztes Raster mit einer gültigen Bit-Tiefe sein.

  • Klicken Sie zum Erstellen eines segmentierten Raster-Datasets auf das Werkzeug Mean Shift-Segmentierung.

  • Verwenden Sie zum Erstellen der Trainingsgebietdatei den Trainingsgebiet-Manager auf der Werkzeugleiste Bildklassifizierung. Weitere Informationen zum Verwenden der Werkzeugleiste Bildklassifizierung finden Sie unter Was ist Bildklassifizierung?

  • Die Ausgabe-Klassifikatordefinitionsdatei enthält Attributstatistiken, die für das Werkzeug Maximum-Likelihood-Klassifizierung geeignet sind.

  • Der Parameter Segmentattribute ist nur dann aktiviert, wenn eine der Raster-Layer-Eingaben ein segmentiertes Bild ist.

Syntax

TrainMaximumLikelihoodClassifier(in_raster, in_training_features, out_classifier_definition, {in_additional_raster}, {used_attributes})
ParameterErklärungDatentyp
in_raster

Das Raster-Dataset, das klassifiziert werden soll.

Raster Layer; Mosaic Layer; Image Service; String
in_training_features

Die Trainingsgebietdatei bzw. der Trainingsgebiet-Layer, der Ihre Training-Sites abgrenzt.

Ihre Trainingsgebiete können entweder in Shapefiles oder in Feature-Classes enthalten sein. In der Trainingsgebiet-Datei werden die folgenden Feldnamen benötigt:

  • classname: Ein Textfeld, das den Namen der Klassenkategorie angibt.
  • classvalue: Ein "Long Integer"-Feld, das den ganzzahligen Wert für die einzelnen Klassenkategorien enthält.

Feature Layer; Raster Catalog Layer
out_classifier_definition

Die JSON-Ausgabedatei, die Attributinformationen, Statistiken, Hyperebenenvektoren und weitere Daten für den Klassifikator enthält. Es wird eine .ecd-Datei erstellt.

File
in_additional_raster
(optional)

Integrieren Sie optional Zusatz-Raster-Datasets wie ein segmentiertes Bild oder ein DEM.

Raster Layer; Mosaic Layer; Image Service; String
used_attributes
[used_attributes,...]
(optional)

Gibt die Attribute an, die in die dem Ausgabe-Raster zugeordnete Attributtabelle aufgenommen werden sollen.

  • COLOR —Die RGB-Farbwerte werden segmentbezogen aus dem Eingabe-Raster abgeleitet.
  • MEAN —Der durchschnittliche Digitalnummernwert (DN), abgeleitet aus dem optionalen Pixelbild, segmentbezogen.
  • STD —Die Standardabweichung, abgeleitet aus dem optionalen Pixelbild, segmentbezogen.
  • COUNT —Die Anzahl der im Segment enthaltenen Pixel, segmentbezogen.
  • COMPACTNESS —Der Grad der Kompaktheit oder Kreisförmigkeit eines Segments, segmentbezogen. Die Werte liegen zwischen 0 und 1, wobei 1 einem Kreis entspricht.
  • RECTANGULARITY —Der Grad der Rechteckigkeit des Segments, segmentbezogen. Die Werte liegen zwischen 0 und 1, wobei 1 einem Rechteck entspricht.

Dieser Parameter ist nur aktiviert, wenn die Schlüsseleigenschaft Segmentiert auf das Eingabe-Raster festgelegt ist. Wenn die einzige Eingabe für das Werkzeug ein segmentiertes Bild ist, lauten die Standardattribute COLOR, COUNT, COMPACTNESS und RECTANGULARITY. Wenn ein in_additional_raster als Eingabe mit einem segmentierten Bild einbezogen wird, sind die Attribute MEAN und STD ebenfalls verfügbar.

String

Codebeispiel

TrainMaximumLikelihoodClassifier – Beispiel 1 (Python-Fenster)

Das folgende Skript veranschaulicht, wie dieses Werkzeug im Python-Fenster verwendet wird.

import arcpy
from arcpy.sa import *

TrainMaximumLikelihoodClassifier(
    "c:/test/moncton_seg.tif", "c:/test/train.gdb/train_features", 
    "c:/output/moncton_sig.ecd", "c:/test/moncton.tif", 
    "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY")
TrainMaximumLikelihoodClassifier – Beispiel 2 (eigenständiges Skript)

In diesem Beispiel wird gezeigt, wie ein Maximum-Likelihood-Klassifikator trainiert wird.

# Import system modules
import arcpy
from arcpy.sa import *


# Set local variables
inSegRaster = "c:/test/moncton_seg.tif"
train_features = "c:/test/train.gdb/train_features"
out_definition = "c:/output/moncton_sig.ecd"
in_additional_raster = "c:/moncton.tif"
attributes = "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY"

# Check out the ArcGIS Spatial Analyst extension license
arcpy.CheckOutExtension("Spatial")

# Execute 
TrainMaximumLikelihoodClassifier(inSegRaster, train_features, out_definition, 
                                 in_additional_raster, attributes)

Umgebungen

  • Aktueller Workspace
  • Ausdehnung
  • Geographische Transformationen
  • Ausgabe-Koordinatensystem
  • Scratch-Workspace
  • Fang-Raster

Lizenzinformationen

  • Basic: Erfordert Spatial Analyst
  • Standard: Erfordert Spatial Analyst
  • Advanced: Erfordert Spatial Analyst

Verwandte Themen

  • Überblick über das Toolset "Segmentierung und Klassifizierung"
  • Was ist Bildklassifizierung?

ArcGIS Desktop

  • Startseite
  • Dokumentation
  • Support

ArcGIS Plattform

  • ArcGIS Online
  • ArcGIS Desktop
  • ArcGIS Enterprise
  • ArcGIS for Developers
  • ArcGIS Solutions
  • ArcGIS Marketplace

Über Esri

  • Über uns
  • Karriere
  • Esri Blog
  • User Conference
  • Developer Summit
Esri
Wir sind an Ihrer Meinung interessiert.
Copyright © 2020 Esri. | Datenschutz | Rechtliches