Die Toolbox "Spatial Statistics" enthält Statistikwerkzeuge zur Analyse von räumlichen Verteilungen, Mustern, Prozessen und Beziehungen. Es gibt zwar Ähnlichkeiten zwischen räumlichen und nicht räumlichen (herkömmlichen) Statistiken im Hinblick auf Begrifflichkeiten und Zielsetzungen, räumliche Statistiken wurden jedoch zur ausschließlichen Verwendung mit geographischen Daten entwickelt. Im Gegensatz zu herkömmlichen nicht räumlichen Statistikmethoden wird hier der Raum (Nähe, Fläche, Konnektivität und/oder andere räumliche Beziehungen) direkt in die Mathematik integriert.
Mit den Werkzeugen in der Toolbox "Spatial Statistics" können Sie die entscheidenden Eigenschaften einer räumlichen Verteilung zusammenfassen (zum Beispiel zur Bestimmung des arithmetischen Mittelpunktes oder des allgemeinen Richtungstrends), statistisch signifikante räumliche Cluster (Hot-Spots/Cold-Spots) und räumliche Ausreißer identifizieren, allgemeine Muster der Cluster-Bildung oder Verteilung bewerten, Features basierend auf Attributähnlichkeiten gruppieren, einen passenden Analysemaßstab identifizieren und räumliche Beziehungen erkunden. Für in Python geschriebene Werkzeuge steht darüber hinaus der Quellcode zur Verfügung, sodass Sie diese und andere Analysewerkzeuge ändern, erweitern oder mit anderen gemeinsam nutzen und daraus lernen können.
Toolset | Beschreibung |
---|---|
Mit diesen Werkzeugen können Sie auswerten, ob Features oder die damit verknüpften Werte ein gruppiertes, verteiltes oder zufälliges räumliches Muster bilden. | |
Mit diesen Werkzeugen können Sie statistisch signifikante Hot-Spots, Cold-Spots und räumliche Ausreißer identifizieren. Es gibt außerdem Werkzeuge zum Identifizieren oder Gruppieren von Features mit ähnlichen Eigenschaften. | |
Mit diesen Werkzeugen können Sie Fragen beantworten wie: Wo ist der Mittelpunkt? Wie sind Shape und Ausrichtung beschaffen? Wie weit verteilt sind die Features? | |
Diese Werkzeuge dienen zur Modellierung von Datenbeziehungen mit Regressionsanalysen und zur Erstellung räumlicher Gewichtungsmatrizen. | |
Mit diesen Dienstprogrammen können Sie eine Vielzahl verschiedener Funktionen ausführen: Berechnung von Flächen, Bewertung von Mindestabständen, Exportieren von Variablen und Geometrie, Konvertieren von räumlichen Gewichtungsdateien und Erfassen von lagegleichen Punkten. |
Zusätzliche Quellen
Auf der Seite Spatial Statistics Resources unter https://www.esriurl.com/spatialstats finden Sie verschiedene Ressourcen, die Ihnen bei der Verwendung der Werkzeuge "Spatial Statistics" und "Space Time Pattern Mining" helfen, darunter die folgenden:
- Praktische Lernprogramme und Lektionen in Learn ArcGIS
- Workshop-Videos und Präsentationen
- Schulungen und Webseminare
- Links zu Büchern, Artikeln und technischen Dokumentationen
- Beispielskripte und Case Studys