Summary
This ArcGIS Online service solves a vehicle routing problem (VRP) to find the best routes for a fleet of vehicles. It is similar to SolveVehicleRoutingProblem, but EditVehicleRoutingProblem is designed to make a few, small edits to the results of a vehicle routing problem and re-solve or solve a small VRP analysis of only two routes.
A dispatcher managing a fleet of vehicles is often required to make decisions about vehicle routing. One such decision involves how to best assign a group of customers to a fleet of vehicles and to sequence and schedule their visits. The objectives in solving such vehicle routing problems (VRP) are to provide a high level of customer service by honoring any time windows while keeping the overall operating and investment costs for each route as low as possible. The constraints are to complete the routes with available resources and within the time limits imposed by driver work shifts, driving speeds, and customer commitments.
This service can be used to determine solutions for such complex fleet management tasks.
Consider an example of delivering goods to grocery stores from a central warehouse location. A fleet of three trucks is available at the warehouse. The warehouse operates only within a certain time window—from 8:00 a.m. to 5:00 p.m.—during which all trucks must return back to the warehouse. Each truck has a capacity of 15,000 pounds, which limits the amount of goods it can carry. Each store has a demand for a specific amount of goods (in pounds) that needs to be delivered, and each store has time windows that confine when deliveries should be made. Furthermore, the driver can work only eight hours per day, requires a break for lunch, and is paid for the time spent on driving and servicing the stores. The goal is to come up with an itinerary for each driver (or route) such that the deliveries can be made while honoring all the service requirements and minimizing the total time spent on a particular route by the driver. The figure below shows three routes obtained by solving the above vehicle routing problem.
Illustration
Usage
-
The EditVehicleRoutingProblem and SolveVehicleRoutingProblem tools generate routes for fleets of vehicles that need to visit many orders for deliveries, pickups, or service calls. This tool runs in synchronous mode and is well-suited for analyses that complete quickly (under 10 seconds)—that is, smaller vehicle routing problems or edits to larger problems. To solve larger problems that require higher limits than those listed below, use the SolveVehicleRoutingProblem instead.
-
You can add up to 100 orders and 2 routes using EditVehicleRoutingProblem. The SolveVehicleRoutingProblem tool is available in the VehicleRoutingProblem toolbox if you need to add more orders or routes.
You can add up to 250 point barriers. You can add any number of line or polygon barriers, but line barriers cannot intersect more than 500 street features, and polygon barriers cannot intersect more than 2,000 features.
You can choose to use the road hierarchy when solving so results are generated faster, but the solution may be somewhat less than optimal.
-
Regardless of whether the use_hierarchy_in_analysis parameter is checked (True), hierarchy is always used when the straight-line distance between orders, depots, or orders and depots is greater than 50 miles (80.46 kilometers).
-
The straight-line distance between any orders or depots cannot be greater than 50 miles (80.46 kilometers) when travel_mode is set to Walking, or when it is set to Custom and the Walking restriction is used.
If the distance between an input point and its nearest traversable street is greater than 12.42 miles (20 kilometers), the point is excluded from the analysis.
This tool is designed to run in ArcGIS Pro, ArcMap, ArcGlobe, and ArcScene, but not in ArcCatalog.
Syntax
EditVehicleRoutingProblem_naagol (orders, depots, routes, breaks, time_units, distance_units, {analysis_region}, {default_date}, {uturn_policy}, {time_window_factor}, {spatially_cluster_routes}, {route_zones}, {route_renewals}, {order_pairs}, {excess_transit_factor}, {point_barriers}, {line_barriers}, {polygon_barriers}, {use_hierarchy_in_analysis}, {restrictions}, {attribute_parameter_values}, {populate_route_lines}, {route_line_simplification_tolerance}, {populate_directions}, {directions_language}, {directions_style_name}, {travel_mode}, {impedance})
Parameter | Explanation | Data Type |
orders | Specify one or more orders (up to 100). These are the locations that the routes of the vehicle routing problem (VRP) analysis should visit. An order can represent a delivery (for example, furniture delivery), a pickup (such as an airport shuttle bus picking up a passenger), or some type of service or inspection (a tree trimming job or building inspection, for instance). When specifying the orders, you can set properties for each one, such as its name or service time, by using attributes. The orders can be specified with the following attributes: ObjectID: The system-managed ID field. Name: The name of the order. The name must be unique. If the name is left null, a name is automatically generated at solve time. ServiceTime: This property specifies how much time will be spent at the network location when the route visits it; that is, it stores the impedance value for the network location. A zero or null value indicates the network location requires no service time. The unit for this field value is specified by the time_units parameter. TimeWindowStart1: The beginning time of the first time window for the network location. This field can contain a null value; a null value indicates no beginning time. A time window only states when a vehicle can arrive at an order; it doesn't state when the service time must be completed. To account for service time and leave before the time window is over, subtract ServiceTime from the TimeWindowEnd1 field. The time window fields can contain a time-only value or a date and time value. If a time field such as TimeWindowStart1 has a time-only value (for example, 8:00 AM), the date is assumed to be the date specified by the Default Date parameter. Using date and time values (for example, 7/11/2010 8:00 AM) allows you to set time windows that span multiple days. When solving a problem that spans multiple time zones, each order's time-window values refer to the time zone in which the order is located. TimeWindowEnd1: The ending time of the first window for the network location. This field can contain a null value; a null value indicates no ending time. TimeWindowStart2: The beginning time of the second time window for the network location. This field can contain a null value; a null value indicates that there is no second time window. If the first time window is null, as specified by the TimeWindowStart1 and TimeWindowEnd1 fields, the second time window must also be null. If both time windows are nonnull, they can't overlap. Also, the second time window must occur after the first. TimeWindowEnd2: The ending time of the second time window for the network location. This field can contain a null value. When TimeWindowStart2 and TimeWindowEnd2 are both null, there is no second time window. When TimeWindowStart2 is not null but TimeWindowEnd2 is null, there is a second time window that has a starting time but no ending time. This is valid. MaxViolationTime1: A time window is considered violated if the arrival time occurs after the time window has ended. This field specifies the maximum allowable violation time for the first time window of the order. It can contain a zero value but can't contain negative values. A zero value indicates that a time window violation at the first time window of the order is unacceptable; that is, the first time window is hard. On the other hand, a null value indicates that there is no limit on the allowable violation time. A nonzero value specifies the maximum amount of lateness; for example, a route can arrive at an order up to 30 minutes beyond the end of its first time window. The unit for this field value is specified by the Time Field Units parameter Time window violations can be tracked and weighted by the solver. Because of this, you can direct the VRP solver to take one of three approaches:
By assigning an importance level for the Time Window Violation Importance parameter, you are essentially choosing one of these three approaches. In any case, however, the solver will return an error if the value set for MaxViolationTime1 is surpassed. MaxViolationTime2: The maximum allowable violation time for the second time window of the order. This field is analogous to the MaxViolationTime1 field. InboundArriveTime: Defines when the item to be delivered to the order will be ready at the starting depot. The order can be assigned to a route only if the inbound arrive time precedes the route's latest start time value; this way, the route cannot leave the depot before the item is ready to be loaded onto it. This field can help model scenarios involving inbound-wave transshipments. For example, a job at an order requires special materials that are not currently available at the depot. The materials are being shipped from another location and will arrive at the depot at 11:00 a.m. To ensure a route that leaves before the shipment arrives isn't assigned to the order, the order's inbound arrive time is set to 11:00 a.m. The special materials arrive at 11:00 a.m., they are loaded onto the vehicle, and the vehicle departs from the depot to visit its assigned orders. Notes:
OutboundDepartTime: Defines when the item to be picked up at the order must arrive at the ending depot. The order can be assigned to a route only if the route can visit the order and reach its end depot before the specified outbound depart time. This field can help model scenarios involving outbound-wave transshipments. For instance, a shipping company sends out delivery trucks to pick up packages from orders and bring them into a depot where they are forwarded on to other facilities, en route to their final destination. At 3:00 p.m. every day, a semitrailer stops at the depot to pick up the high-priority packages and take them directly to a central processing station. To avoid delaying the high-priority packages until the next day's 3:00 p.m. trip, the shipping company tries to have delivery trucks pick up the high-priority packages from orders and bring them to the depot before the 3:00 p.m. deadline. This is done by setting the outbound depart time to 3:00 p.m. Notes:
DeliveryQuantities: The size of the delivery. You can specify size in any dimension you want, such as weight, volume, or quantity. You can even specify multiple dimensions, for example, weight and volume. Enter delivery quantities without indicating units. For example, if a 300-pound object needs to be delivered to an order, enter 300. You will need to remember that the value is in pounds. If you are tracking multiple dimensions, separate the numeric values with a space. For instance, if you are recording the weight and volume of a delivery that weighs 2,000 pounds and has a volume of 100 cubic feet, enter 2000 100. Again, you need to remember the units—in this case, pounds and cubic feet. You also need to remember the sequence in which the values and their corresponding units are entered. Make sure that Capacities for Routes and DeliveryQuantities and PickupQuantities for Orders are specified in the same manner; that is, the values need to be in the same units, and if you are using multiple dimensions, the dimensions need to be listed in the same sequence for all parameters. So if you specify weight in pounds, followed by volume in cubic feet for DeliveryQuantities, the capacity of your routes and the pickup quantities of your orders need to be specified the same way: weight in pounds, then volume in cubic feet. If you mix units or change the sequence, you will get unwanted results without receiving any warning messages. An empty string or null value is equivalent to all dimensions being zero. If the string has an insufficient number of values in relation to the capacity count, or dimensions being tracked, the remaining values are treated as zeros. Delivery quantities can't be negative. PickupQuantities: The size of the pickup. You can specify size in any dimension you want, such as weight, volume, or quantity. You can even specify multiple dimensions, for example, weight and volume. You cannot, however, use negative values. This field is analogous to the DeliveryQuantities field of Orders. In the case of an exchange visit, an order can have both delivery and pickup quantities. Revenue: The income generated if the order is included in a solution. This field can contain a null value—a null value indicates zero revenue—but it can't have a negative value. Revenue is included in optimizing the objective function value but is not part of the solution's operating cost; that is, the TotalCost field in the route class never includes revenue in its output. However, revenue weights the relative importance of servicing orders. SpecialtyNames: A space-separated string containing the names of the specialties required by the order. A null value indicates that the order doesn't require specialties. The spelling of any specialties listed in the Orders and Routes classes must match exactly so that the VRP solver can link them together. To illustrate what specialties are and how they work, assume a lawn care and tree trimming company has a portion of its orders that requires a bucket truck to trim tall trees. The company would enter BucketTruck in the SpecialtyNames field for these orders to indicate their special need. SpecialtyNames would be left as null for the other orders. Similarly, the company would also enter BucketTruck in the SpecialtyNames field of routes that are driven by trucks with hydraulic booms. It would leave the field null for the other routes. At solve time, the VRP solver assigns orders without special needs to any route, but it only assigns orders that need bucket trucks to routes that have them. AssignmentRule: This field specifies the rule for assigning the order to a route. It is constrained by a domain of values, which are listed below (use the numeric code, not the name in parentheses).
This field can't contain a null value. CurbApproach: Specifies the direction a vehicle may arrive at and depart from the order. The field value is specified as one of the following integers shown in the parentheses (use the numeric code, not the name in parentheses):
The CurbApproach property is designed to work with both kinds of national driving standards: right-hand traffic (United States) and left-hand traffic (United Kingdom). First, consider an order on the left side of a vehicle. It is always on the left side regardless of whether the vehicle travels on the left or right half of the road. What may change with national driving standards is your decision to approach an order from one of two directions, that is, so it ends up on the right or left side of the vehicle. For example, if you want to arrive at an order and not have a lane of traffic between the vehicle and the order, you would choose 1 (Right side of vehicle) in the United States but 2 (Left side of vehicle) in the United Kingdom. RouteName: The name of the route to which the order is assigned. As an input field, this field is used to preassign an order to a specific route. It can contain a null value, indicating that the order is not preassigned to any route, and the solver determines the best possible route assignment for the order. If this is set to null, the sequence field must also be set to null. After a solve operation, if the order is routed, the RouteName field contains the name of the route that the order is assigned to. Sequence: This indicates the sequence of the order on its assigned route. As an input field, this field is used to specify the relative sequence for an order on the route. This field can contain a null value specifying that the order can be placed anywhere along the route. A null value can only occur together with a null RouteName value. The input sequence values are positive and unique for each route (shared across renewal depot visits, orders, and breaks), but do not need to start from 1 or be contiguous. After a solve operation, the Sequence field contains the sequence value of the order on its assigned route. Output sequence values for a route are shared across depot visits, orders, and breaks; start from 1 (at the starting depot); and are consecutive. So the smallest possible output sequence value for a routed order is 2, since a route always begins at a depot | Feature Set |
depots | Specify one or more depots for the given vehicle routing problem. A depot is a location that a vehicle departs from at the beginning of its workday and returns to at the end of the workday. Vehicles are loaded (for deliveries) or unloaded (for pickups) at depots at the start of the route. In some cases, a depot can also act as a renewal location whereby the vehicle can unload or reload and continue performing deliveries and pickups. A depot has open and close times, as specified by a hard time-window. Vehicles can't arrive at a depot outside of this time window. When specifying the orders, you can set properties for each one, such as its name or service time, by using attributes. The orders can be specified with the following attributes: ObjectID: The system-managed ID field. Name: The name of the depot. The StartDepotName and EndDepotName fields of the Routes record set reference the names you specify here. It is also referenced by the Route Renewals record set, when used. Depot names are case insensitive and have to be nonempty and unique. TimeWindowStart1: The beginning time of the first time window for the network location. This field can contain a null value; a null value indicates no beginning time. Time window fields can contain a time-only value or a date and time value. If a time field has a time-only value (for example, 8:00 AM), the date is assumed to be the date specified by the Default Date parameter of the analysis layer. Using date and time values (for example, 7/11/2010 8:00 AM) allows you to set time windows that span multiple days. When solving a problem that spans multiple time zones, each depot's time-window values refer to the time zone in which the depot is located. TimeWindowEnd1: The ending time of the first window for the network location. This field can contain a null value; a null value indicates no ending time. TimeWindowStart2: The beginning time of the second time window for the network location. This field can contain a null value; a null value indicates that there is no second time window. If the first time window is null, as specified by the TimeWindowStart1 and TimeWindowEnd1 fields, the second time window must also be null. If both time windows are nonnull, they can't overlap. Also, the second time window must occur after the first. TimeWindowEnd2: The ending time of the second time window for the network location. This field can contain a null value. When TimeWindowStart2 and TimeWindowEnd2 are both null, there is no second time window. When TimeWindowStart2 is not null but TimeWindowEnd2 is null, there is a second time window that has a starting time but no ending time. This is valid. CurbApproach: Specifies the direction a vehicle may arrive at and depart from the depot. The field value is specified as one of the following integers shown in the parentheses (use the numeric code, not the name in parentheses):
The CurbApproach property is designed to work with both kinds of national driving standards: right-hand traffic (United States) and left-hand traffic (United Kingdom). First, consider a depot on the left side of a vehicle. It is always on the left side regardless of whether the vehicle travels on the left or right half of the road. What may change with national driving standards is your decision to approach a depot from one of two directions, that is, so it ends up on the right or left side of the vehicle. For example, if you want to arrive at a depot and not have a lane of traffic between the vehicle and the depot, you would choose 1 (Right side of vehicle) in the United States but 2 (Left side of vehicle) in the United Kingdom. Bearing: The direction in which a point is moving. The units are degrees and are measured in a clockwise fashion from true north. This field is used in conjunction with the BearingTol field. Bearing data is usually sent automatically from a mobile device that is equipped with a GPS receiver. Try to include bearing data if you are loading an order that is moving, such as a pedestrian or a vehicle. Using this field tends to prevent adding locations to the wrong edges, which can occur when a vehicle is near an intersection or an overpass, for example. Bearing also helps the tool determine which side of the street the point is on. For more information, see the Bearing and Bearing Tolerance Help topic (http://links.esri.com/bearing-and-bearing-tolerance). BearingTol: The bearing tolerance value creates a range of acceptable bearing values when locating moving points on an edge using the Bearing field. If the value from the Bearing field is within the range of acceptable values that are generated from the bearing tolerance on an edge, the point can be added as a network location there; otherwise, the closest point on the next-nearest edge is evaluated. The units are in degrees, and the default value is 30. Values must be greater than zero and less than 180. A value of 30 means that when Network Analyst attempts to add a network location on an edge, a range of acceptable bearing values is generated 15º to either side of the edge (left and right) and in both digitized directions of the edge. For more information, see the Bearing and Bearing Tolerance topic in the ArcGIS help system (http://links.esri.com/bearing-and-bearing-tolerance). NavLatency: This field is only used in the solve process if Bearing and BearingTol also have values; however, entering a NavLatency value is optional, even when values are present in Bearing and BearingTol. NavLatency indicates how much time is expected to elapse from the moment GPS information is sent from a moving vehicle to a server and the moment the processed route is received by the vehicle's navigation device. The time units of NavLatency are the same as the units of the cost attribute specified by the parameter Time Attribute. | Feature Set |
routes | Specify one or more routes (up to 2). A route specifies vehicle and driver characteristics; after solving, it also represents the path between depots and orders. A route can have start and end depot service times, a fixed or flexible starting time, time-based operating costs, distance-based operating costs, multiple capacities, various constraints on a driver's workday, and so on. When specifying the routes, you can set properties for each one by using attributes. The routes can be specified with the following attributes: Name: The name of the route. The name must be unique. The tool generates a unique name at solve time if the field value is null; therefore, entering a value is optional in most cases. However, you must enter a name if your analysis includes breaks, route renewals, route zones, or orders that are preassigned to a route because the route name is used as a foreign key in these cases. Note that route names are case insensitive. StartDepotName: The name of the starting depot for the route. This field is a foreign key to the Name field in Depots. If the StartDepotName value is null, the route will begin from the first order assigned. Omitting the start depot is useful when the vehicle's starting location is unknown or irrelevant to your problem. However, when StartDepotName is null, EndDepotName cannot also be null. If the route is making deliveries and StartDepotName is null, it is assumed the cargo is loaded on the vehicle at a virtual depot before the route begins. For a route that has no renewal visits, its delivery orders (those with nonzero DeliveryQuantities values in the Orders class) are loaded at the start depot or virtual depot. For a route that has renewal visits, only the delivery orders before the first renewal visit are loaded at the start depot or virtual depot. EndDepotName: The name of the ending depot for the route. This field is a foreign key to the Name field in the Depots class. StartDepotServiceTime: The service time at the starting depot. This can be used to model the time spent for loading the vehicle. This field can contain a null value; a null value indicates zero service time. The unit for this field value is specified by the Time Field Units parameter. The service times at the start and end depots are fixed values (given by the StartDepotServiceTime and EndDepotServiceTime field values) and do not take into account the actual load for a route. For example, the time taken to load a vehicle at the starting depot may depend on the size of the orders. As such, the depot service times could be given values corresponding to a full truckload or an average truckload, or you could make your own time estimate. EndDepotServiceTime: The service time at the ending depot. This can be used to model the time spent for unloading the vehicle. This field can contain a null value; a null value indicates zero service time. The unit for this field value is specified by the Time Field Units parameter. The service times at the start and end depots are fixed values (given by the StartDepotServiceTime and EndDepotServiceTime field values) and do not take into account the actual load for a route. For example, the time taken to load a vehicle at the starting depot may depend on the size of the orders. As such, the depot service times could be given values corresponding to a full truckload or an average truckload, or you could make your own time estimate. EarliestStartTime: The earliest allowable starting time for the route. This is used by the solver in conjunction with the time window of the starting depot for determining feasible route start times. This field can't contain null values and has a default time-only value of 8:00 AM; the default value is interpreted as 8:00 a.m. on the date given by the Default Date parameter. When solving a problem that spans multiple time zones, the time zone for EarliestStartTime is the same as the time zone in which the starting depot is located. LatestStartTime: The latest allowable starting time for the route. This field can't contain null values and has a default time-only value of 10:00 AM; the default value is interpreted as 10:00 a.m. on the date given by the Default Date property of the analysis layer. When solving a problem that spans multiple time zones, the time zone for LatestStartTime is the same as the time zone in which the starting depot is located. ArriveDepartDelay: This field stores the amount of travel time needed to accelerate the vehicle to normal travel speeds, decelerate it to a stop, and move it off and on the network (for example, in and out of parking). By including an ArriveDepartDelay value, the VRP solver is deterred from sending many routes to service physically coincident orders. The cost for this property is incurred between visits to noncoincident orders, depots, and route renewals. For example, when a route starts from a depot and visits the first order, the total arrive/depart delay is added to the travel time. The same is true when traveling from the first order to the second order. If the second and third orders are coincident, the ArriveDepartDelay value is not added between them since the vehicle doesn't need to move. If the route travels to a route renewal, the value is added to the travel time again. Although a vehicle needs to slow down and stop for a break and accelerate afterwards, the VRP solver cannot add the ArriveDepartDelay value for breaks. This means that if a route leaves an order, stops for a break, and continues to the next order, the arrive/depart delay is added only once, not twice. To illustrate, assume there are five coincident orders in a high-rise building, and they are serviced by three different routes. This means three arrive/depart delays would be incurred; that is, three drivers would need to separately find parking places and enter the same building. However, if the orders could be serviced by just one route instead, only one driver would need to park and enter the building—only one arrive/depart delay would be incurred. Since the VRP solver tries to minimize cost, it will try to limit the arrive/depart delays and thus choose the single-route option. (Note that multiple routes may need to be sent when other constraints—such as specialties, time windows, or capacities—require it.) The unit for this field value is specified by the time_units parameter. Capacities: The maximum capacity of the vehicle. You can specify capacity in any dimension you want, such as weight, volume, or quantity. You can even specify multiple dimensions; for example, weight and volume. Enter capacities without indicating units. For example, assume your vehicle can carry a maximum of 40,000 pounds; you would enter 40000. You need to remember for future reference that the value is in pounds. If you are tracking multiple dimensions, separate the numeric values with a space. For instance, if you are recording both weight and volume and your vehicle can carry a maximum weight of 40,000 pounds and a maximum volume of 2,000 cubic feet, Capacities should be entered as 40000 2000. Again, you need to remember the units. You also need to remember the sequence in which the values and their corresponding units are entered (pounds followed by cubic feet in this case). Remembering the units and the unit sequence is important for a couple of reasons: one, so you can reinterpret the information later; two, so you can properly enter values for the DeliveryQuantities and PickupQuantities fields for the orders. To elaborate on the second point, note that the VRP solver simultaneously refers to Capacities, DeliveryQuantities, and PickupQuantities to make sure that a route doesn't become overloaded. Since units can't be entered in the field, the VRP tool can't make unit conversions, so you need to enter the values for the three fields using the same units and the same unit sequence to ensure the values are correctly interpreted. If you mix units or change the sequence in any of the three fields, you will get unwanted results without receiving any warning messages. Thus, it is a good idea to set up a unit and unit-sequence standard beforehand and continually refer to it whenever entering values for these three fields. An empty string or null value is equivalent to all values being zero. Capacity values can't be negative. If the Capacities string has an insufficient number of values in relation to the DeliveryQuantities or PickupQuantities fields for orders, the remaining values are treated as zero. The VRP solver only performs a simple Boolean test to determine whether capacities are exceeded. If a route's capacity value is greater than or equal to the total quantity being carried, the VRP solver will assume the cargo fits in the vehicle. This could be incorrect, depending on the actual shape of the cargo and the vehicle. For example, the VRP solver allows you to fit a 1,000-cubic-foot sphere into a 1,000-cubic-foot truck that is 8 feet wide. In reality, however, since the sphere is 12.6 feet in diameter, it won't fit in the 8-foot wide truck. FixedCost: A fixed monetary cost that is incurred only if the route is used in a solution (that is, it has orders assigned to it). This field can contain null values; a null value indicates a zero-fixed cost. This cost is part of the total route operating cost. CostPerUnitTime: The monetary cost incurred—per unit of work time—for the total route duration, including travel times as well as service times and wait times at orders, depots, and breaks. This field can't contain a null value and has a default value of 1.0. The unit for this field value is specified by the time_units parameter. CostPerUnitDistance: The monetary cost incurred—per unit of distance traveled—for the route length (total travel distance). This field can contain null values; a null value indicates zero cost. The unit for this field value is specified by the distance_units parameter. OvertimeStartTime: The duration of regular work time before overtime computation begins. This field can contain null values; a null value indicates that overtime does not apply. The unit for this field value is specified by the time_units parameter. For example, if the driver is to be paid overtime pay when the total route duration extends beyond eight hours, OvertimeStartTime is specified as 480 (8 hours * 60 minutes/hour), given the time_units parameter is set to Minutes. CostPerUnitOvertime: The monetary cost incurred per time unit of overtime work. This field can contain null values; a null value indicates that the CostPerUnitOvertime value is the same as the CostPerUnitTime value. MaxOrderCount: The maximum allowable number of orders on the route. This field can't contain null values and has a default value of 30. MaxTotalTime: The maximum allowable route duration. The route duration includes travel times as well as service and wait times at orders, depots, and breaks. This field can contain null values; a null value indicates that there is no constraint on the route duration. The unit for this field value is specified by the time_units parameter. MaxTotalTravelTime: The maximum allowable travel time for the route. The travel time includes only the time spent driving on the network and does not include service or wait times. This field can contain null values; a null value indicates there is no constraint on the maximum allowable travel time. This field value can't be larger than the MaxTotalTime field value. The unit for this field value is specified by the time_units parameter. MaxTotalDistance: The maximum allowable travel distance for the route. The unit for this field value is specified by the distance_units parameter. This field can contain null values; a null value indicates that there is no constraint on the maximum allowable travel distance. SpecialtyNames: A space-separated string containing the names of the specialties supported by the route. A null value indicates that the route does not support any specialties. This field is a foreign key to the SpecialtyNames field in the orders class. To illustrate what specialties are and how they work, assume a lawn care and tree trimming company has a portion of its orders that requires a bucket truck to trim tall trees. The company would enter BucketTruck in the SpecialtyNames field for these orders to indicate their special need. SpecialtyNames would be left as null for the other orders. Similarly, the company would also enter BucketTruck in the SpecialtyNames field of routes that are driven by trucks with hydraulic booms. It would leave the field null for the other routes. At solve time, the VRP solver assigns orders without special needs to any route, but it only assigns orders that need bucket trucks to routes that have them. AssignmentRule: This specifies whether the route can be used or not when solving the problem. This field is constrained by a domain of values, which are listed below (use the numeric code, not the name in parentheses).
| Record Set |
breaks | These are the rest periods, or breaks, for the routes in a given vehicle routing problem. A break is associated with exactly one route, and it can be taken after completing an order, while en route to an order, or prior to servicing an order. It has a start time and a duration, for which the driver may or may not be paid. There are three options for establishing when a break begins: using a time window, a maximum travel time, or a maximum work time. When specifying the breaks, you can set properties for each one, such as its name or service time, by using attributes. The orders can be specified with the following attributes: ObjectID: The system-managed ID field. RouteName: The name of the route to which the break applies. Although a break is assigned to exactly one route, many breaks can be assigned to the same route. This field is a foreign key to the Name field in the routes parameter, so it can't have a null value. Precedence: Precedence values sequence the breaks of a given route. Breaks with a precedence value of 1 occur before those with a value of 2, and so on. All breaks must have a precedence value, regardless of whether they are time-window, maximum-travel-time, or maximum-work-time breaks. ServiceTime: The duration of the break. This field can contain null values; a null value indicates no service time. The unit for this field value is specified by the time_units parameter. TimeWindowStart: The starting time of the break's time window. If this field is null and TimeWindowEnd has a valid time-of-day value, the break is allowed to start any time before the TimeWindowEnd value. If this field has a value, the MaxTravelTimeBetweenBreaks and MaxCumulWorkTime field values must be null; moreover, all other breaks in the analysis layer must have null values for MaxTravelTimeBetweenBreaks and MaxCumulWorkTime. An error will occur at solve time if a route has multiple breaks with overlapping time windows. The time window fields in breaks can contain a time-only value or a date and time value. If a time field, such as TimeWindowStart, has a time-only value (for example, 12:00 PM), the date is assumed to be the date specified by the default_date parameter. Using date and time values (for example, 7/11/2012 12:00 PM) allows you to specify time windows that span two or more days. This is especially beneficial when a break should be taken sometime before and after midnight. When solving a problem that spans multiple time zones, each break's time-window values refer to the time zone in which the associated route, as specified by the RouteName field, is located. TimeWindowEnd: The ending time of the break's time window. If this field is null and TimeWindowStart has a valid time-of-day value, the break is allowed to start any time after the TimeWindowStart value. If this field has a value, MaxTravelTimeBetweenBreaks and MaxCumulWorkTime must be null; moreover, all other breaks in the analysis layer must have null values for MaxTravelTimeBetweenBreaks and MaxCumulWorkTime. MaxViolationTime: This field specifies the maximum allowable violation time for a time-window break. A time window is considered violated if the arrival time falls outside the time range. A zero value indicates the time window cannot be violated; that is, the time window is hard. A nonzero value specifies the maximum amount of lateness; for example, the break can begin up to 30 minutes beyond the end of its time window, but the lateness is penalized as per the Time Window Violation Importance parameter. This property can be null; a null value with TimeWindowStart and TimeWindowEnd values indicates that there is no limit on the allowable violation time. If MaxTravelTimeBetweenBreaks or MaxCumulWorkTime has a value, MaxViolationTime must be null. The unit for this field value is specified by the time_units parameter. MaxTravelTimeBetweenBreaks: The maximum amount of travel time that can be accumulated before the break is taken. The travel time is accumulated either from the end of the previous break or, if a break has not yet been taken, from the start of the route. If this is the route's final break, MaxTravelTimeBetweenBreaks also indicates the maximum travel time that can be accumulated from the final break to the end depot. This field is designed to limit how long a person can drive until a break is required. For instance, if the Time Field Units parameter (time_units for Python) of the analysis is set to Minutes, and MaxTravelTimeBetweenBreaks has a value of 120, the driver will get a break after two hours of driving. To assign a second break after two more hours of driving, the second break's MaxTravelTimeBetweenBreaks property should be 120. If this field has a value, TimeWindowStart, TimeWindowEnd, MaxViolationTime, and MaxCumulWorkTime must be null for an analysis to solve successfully. The unit for this field value is specified by the time_units parameter. MaxCumulWorkTime: The maximum amount of work time that can be accumulated before the break is taken. Work time is always accumulated from the beginning of the route. Work time is the sum of travel time and service times at orders, depots, and breaks. Note, however, that this excludes wait time, which is the time a route (or driver) spends waiting at an order or depot for a time window to begin. This field is designed to limit how long a person can work until a break is required. For instance, if the time_units parameter is set to Minutes, MaxCumulWorkTime has a value of 120, and ServiceTime has a value of 15, the driver will get a 15-minute break after two hours of work. Continuing with the last example, assume a second break is needed after three more hours of work. To specify this break, you would enter 315 (five hours and 15 minutes) as the second break's MaxCumulWorkTime value. This number includes the MaxCumulWorkTime and ServiceTime values of the preceding break, along with the three additional hours of work time before granting the second break. To avoid taking maximum-work-time breaks prematurely, remember that they accumulate work time from the beginning of the route and that work time includes the service time at previously visited depots, orders, and breaks. If this field has a value, TimeWindowStart, TimeWindowEnd, MaxViolationTime, and MaxTravelTimeBetweenBreaks must be null for an analysis to solve successfully. The unit for this field value is specified by the time_units parameter. IsPaid: A Boolean value indicating whether the break is paid or unpaid. A True value indicates that the time spent at the break is included in the route cost computation and overtime determination. A False value indicates otherwise. The default value is True. Sequence: As an input field, this indicates the sequence of the break on its route. This field can contain null values. The input sequence values are positive and unique for each route (shared across renewal depot visits, orders, and breaks) but need not start from 1 or be contiguous. The solver modifies the sequence field. After solving, this field contains the sequence value of the break on its route. Output sequence values for a route are shared across depot visits, orders, and breaks; start from 1 (at the starting depot); and are consecutive. | Record Set |
time_units | The time units for all time-based field values in the analysis. Many features and records in a VRP analysis have fields for storing time values, such as ServiceTime for orders and CostPerUnitTime for routes. To minimize data entry requirements, these field values don't include units. Instead, all distance-based field values must be entered in the same units, and this parameter is used to specify the units of those values. Note that output time-based fields use the same units specified by this parameter. | String |
distance_units | The distance units for all distance-based field values in the analysis. Many features and records in a VRP analysis have fields for storing distance values, such as MaxTotalDistance and CostPerUnitDistance for Routes. To minimize data entry requirements, these field values don't include units. Instead, all distance-based field values must be entered in the same units, and this parameter is used to specify the units of those values. Note that output distance-based fields use the same units specified by this paramater. | String |
analysis_region (Optional) | Specify the region in which to perform the analysis. If a value is not specified for this parameter, the tool will automatically calculate the region name based on the location of the input points. Setting the name of the region is recommended to speed up the tool execution. To specify a region, use one of the following values:
| String |
default_date (Optional) | The default date for time field values that specify a time of day without including a date. You can find these time fields in various input parameters, such as the ServiceTime attributes in the orders and breaks parameters. | Date |
uturn_policy (Optional) | Use this parameter to restrict or permit the service area to make U-turns at junctions. In order to understand the parameter values, consider for a moment the following terminology: a junction is a point where a street segment ends and potentially connects to one or more other segments; a pseudo-junction is a point where exactly two streets connect to one another; an intersection is a point where three or more streets connect; and a dead-end is where one street segment ends without connecting to another. Given this information, the parameter can have the following values:
The value you provide for this parameter is ignored unless Travel Mode is set to Custom, which is the default value. | String |
time_window_factor (Optional) | Rates the importance of honoring time windows. There are three options described below.
| String |
spatially_cluster_routes (Optional) |
| Boolean |
route_zones (Optional) | Delineates work territories for given routes. A route zone is a polygon feature and is used to constrain routes to servicing only those orders that fall within or near the specified area. Here are some examples of when route zones may be useful:
When specifying the route zones, you need to set properties for each one, such as its associated route, by using attributes. The route zones can be specified with the following attributes: ObjectID: The system-managed ID field. RouteName: The name of the route to which this zone applies. A route zone can have a maximum of one associated route. This field can't contain null values, and it is a foreign key to the Name field in the feature in the routes parameter. IsHardZone: A Boolean value indicating a hard or soft route zone. A True value indicates that the route zone is hard; that is, an order that falls outside the route zone polygon can't be assigned to the route. The default value is 1 (True). A False value (0) indicates that such orders can still be assigned, but the cost of servicing the order is weighted by a function based on the Euclidean distance from the route zone. Basically, this means that as the straight-line distance from the soft zone to the order increases, the likelihood of the order being assigned to the route decreases. | Feature Set |
route_renewals (Optional) | Specifies the intermediate depots that routes can visit to reload or unload the cargo they are delivering or picking up. Specifically, a route renewal links a route to a depot. The relationship indicates the route can renew (reload or unload while en route) at the associated depot. Route renewals can be used to model scenarios in which a vehicle picks up a full load of deliveries at the starting depot, services the orders, returns to the depot to renew its load of deliveries, and continues servicing more orders. For example, in propane gas delivery, the vehicle may make several deliveries until its tank is nearly or completely depleted, visit a refueling point, and make more deliveries. Here are a few rules and options to consider when also working with route seed points:
When specifying the route renewals, you need to set properties for each one, such as the name of the depot where the route renewal can occur, by using attributes. The route renewals can be specified with the following attributes: ObjectID: The system-managed ID field. DepotName: The name of the depot where this renewal takes place. This field can't contain a null value and is a foreign key to the Name field in the depots parameter. RouteName: The name of the route to which this renewal applies. This field can't contain a null value and is a foreign key to the Name field in the routes parameter. ServiceTime: The service time for the renewal. This field can contain a null value; a null value indicates zero service time. The unit for this field value is specified by the time_units parameter. The time taken to load a vehicle at a renewal depot may depend on the size of the vehicle and how full or empty the vehicle is. However, the service time for a route renewal is a fixed value and does not take into account the actual load. As such, the renewal service time should be given a value corresponding to a full truckload, an average truckload, or another time estimate of your choice. | Record Set |
order_pairs (Optional) | This parameter pairs pickup and delivery orders so they are serviced by the same route. Sometimes it is required that the pickup and delivery for orders be paired. For example, a courier company might need to have a route pick up a high-priority package from one order and deliver it to another without returning to a depot, or sorting station, to minimize delivery time. These related orders can be assigned to the same route with the appropriate sequence by using order pairs. Moreover, restrictions on how long the package can stay in the vehicle can also be assigned; for example, the package might be a blood sample that has to be transported from the doctor's office to the lab within two hours. When specifying the order pairs, you need to set properties for each one, such as the names of the two orders, by using attributes. The order pairs can be specified with the following attributes: ObjectID: The system-managed ID field. FirstOrderName: The name of the first order of the pair. This field is a foreign key to the Name field in the orders parameter. SecondOrderName: The name of the second order of the pair. This field is a foreign key to the name field in the orders parameter. The first order in the pair must be a pickup order; that is, the value for its DeliveryQuantities field is null. The second order in the pair must be a delivery order; that is, the value for its PickupQuantities field is null. The quantity picked up at the first order must agree with the quantity delivered at the second order. As a special case, both orders may have zero quantities for scenarios where capacities are not used. The order quantities are not loaded or unloaded at depots. MaxTransitTime: The maximum transit time for the pair. The transit time is the duration from the departure time of the first order to the arrival time at the second order. This constraint limits the time-on-vehicle, or ride time, between the two orders. When a vehicle is carrying people or perishable goods, the ride time is typically shorter than that of a vehicle carrying packages or nonperishable goods. This field can contain null values; a null value indicates that there is no constraint on the ride time. The unit for this field value is specified by the time_units parameter. Excess transit time (measured with respect to the direct travel time between order pairs) can be tracked and weighted by the solver. Because of this, you can direct the VRP solver to take one of three approaches:
By assigning an importance level for the excess_transit_factor parameter, you are in effect choosing one of these three approaches. Regardless of the importance level, the solver will always return an error if the MaxTransitTime value is surpassed. | Record Set |
excess_transit_factor (Optional) | Rates the importance of reducing excess transit time of order pairs. Excess transit time is the amount of time exceeding the time required to travel directly between the paired orders. Excess time can be caused by driver breaks or travel to intermediate orders and depots. Listed below are the three values from which you can choose.
| String |
point_barriers (Optional) | Specify one or more points to act as temporary restrictions or represent additional time or distance that may be required to travel on the underlying streets. For example, a point barrier can be used to represent a fallen tree along a street or time delay spent at a railroad crossing. The tool imposes a limit of 250 points that can be added as barriers. When specifying the point barriers, you can set properties for each one, such as its name or barrier type, by using attributes. The point barriers can be specified with the following attributes: Name: The name of the barrier. BarrierType: Specifies whether the point barrier restricts travel completely or adds time or distance when it is crossed. The value for this attribute is specified as one of the following integers (use the numeric code, not the name in parentheses):
Additional_Time: Indicates how much travel time is added when the barrier is traversed. This field is applicable only for added-cost barriers and only if the measurement units are time based. This field value must be greater than or equal to zero, and its units are the same as those specified in the Measurement Units parameter. Additional_Distance: Indicates how much distance is added when the barrier is traversed. This field is applicable only for added-cost barriers and only if the measurement units are distance based. The field value must be greater than or equal to zero, and its units are the same as those specified in the Measurement Units parameter. | Feature Set |
line_barriers (Optional) | Specify one or more lines that prohibit travel anywhere the lines intersect the streets. For example, a parade or protest that blocks traffic across several street segments can be modeled with a line barrier. A line barrier can also quickly fence off several roads from being traversed, thereby channeling possible routes away from undesirable parts of the street network. The tool imposes a limit on the number of streets you can restrict using the Line Barriers parameter. While there is no limit on the number of lines you can specify as line barriers, the combined number of streets intersected by all the lines cannot exceed 500. When specifying the line barriers, you can set a name property for each one by using the following attribute: Name: The name of the barrier. | Feature Set |
polygon_barriers (Optional) | Specify polygons that either completely restrict travel or proportionately scale the time or distance required to travel on the streets intersected by the polygons. The service imposes a limit on the number of streets you can restrict using the Polygon Barriers parameter. While there is no limit on the number of polygons you can specify as the polygon barriers, the combined number of streets intersected by all the polygons should not exceed 2,000. When specifying the polygon barriers, you can set properties for each one, such as its name or barrier type, by using attributes. The polygon barriers can be specified with the following attributes: Name: The name of the barrier. BarrierType: Specifies whether the barrier restricts travel completely or scales the time or distance for traveling through it. The field value is specified as one of the following integers (use the numeric code, not the name in parentheses):
ScaledTimeFactor: This is the factor by which the travel time of the streets intersected by the barrier is multiplied. This field is applicable only for scaled-cost barriers and only if the measurement units are time based. The field value must be greater than zero. ScaledDistanceFactor: This is the factor by which the distance of the streets intersected by the barrier is multiplied. This attribute is applicable only for scaled-cost barriers and only if the measurement units are distance based. The attribute value must be greater than zero. | Feature Set |
use_hierarchy_in_analysis (Optional) | Specify whether hierarchy should be used when finding the best routes.
The tool automatically reverts to using hierarchy if the straight-line distance between orders, depots, or orders and depots is greater than 50 miles, even if you have set this parameter to not use hierarchy. The value you provide for this parameter is ignored unless Travel Mode is set to Custom, which is the default value. | Boolean |
restrictions (Optional) | Specify which restrictions should be honored by the tool when finding the best routes. The value you provide for this parameter is ignored unless Travel Mode is set to Custom, which is the default value. A restriction represents a driving preference or requirement. In most cases, restrictions cause roads to be prohibited. For instance, using an Avoid Toll Roads restriction will result in a route that will include toll roads only when it is absolutely required to travel on toll roads in order to visit an incident or a facility. Height Restriction makes it possible to route around any clearances that are lower than the height of your vehicle. If you are carrying corrosive materials on your vehicle, using the Any Hazmat Prohibited restriction prevents hauling the materials along roads where it is marked as illegal to do so. Below is a list of available restrictions and a short description. The tool supports the following restrictions:
| String |
attribute_parameter_values (Optional) | Specify additional values required by some restrictions, such as the weight of a vehicle for Weight Restriction. You can also use the attribute parameter to specify whether any restriction prohibits, avoids, or prefers travel on roads that use the restriction. If the restriction is meant to avoid or prefer roads, you can further specify the degree to which they are avoided or preferred using this parameter. For example, you can choose to never use toll roads, avoid them as much as possible, or even highly prefer them. The value you provide for this parameter is ignored unless Travel Mode is set to Custom, which is the default value. If you specify the Attribute Parameter Values parameter from a feature class, the field names on the feature class must match the fields as described below: AttributeName: Lists the name of the restriction. ParameterName: Lists the name of the parameter associated with the restriction. A restriction can have one or more ParameterName field values based on its intended use. ParameterValue: The value for ParameterName used by the tool when evaluating the restriction. Attribute Parameter Values is dependent on the Restrictions parameter. The ParameterValue field is applicable only if the restriction name is specified as the value for the Restrictions parameter. In Attribute Parameter Values, each restriction (listed as AttributeName) has a ParameterName field value, Restriction Usage, that specifies whether the restriction prohibits, avoids, or prefers travel on the roads associated with the restriction and the degree to which the roads are avoided or preferred. The Restriction Usage ParameterName can be assigned any of the following string values or their equivalent numeric values listed within the parentheses:
In most cases, you can use the default value, PROHIBITED, for the Restriction Usage if the restriction is dependent on a vehicle-characteristic such as vehicle height. However, in some cases, the value for Restriction Usage depends on your routing preferences. For example, the Avoid Toll Roads restriction has the default value of AVOID_MEDIUM for the Restriction Usage parameter. This means that when the restriction is used, the tool will try to route around toll roads when it can. AVOID_MEDIUM also indicates how important it is to avoid toll roads when finding the best route; it has a medium priority. Choosing AVOID_LOW would put lower importance on avoiding tolls; choosing AVOID_HIGH instead would give it a higher importance and thus make it more acceptable for the service to generate longer routes to avoid tolls. Choosing PROHIBITED would entirely disallow travel on toll roads, making it impossible for a route to travel on any portion of a toll road. Keep in mind that avoiding or prohibiting toll roads, and thus avoiding toll payments, is the objective for some; in contrast, others prefer to drive on toll roads because avoiding traffic is more valuable to them than the money spent on tolls. In the latter case, you would choose PREFER_LOW, PREFER_MEDIUM, or PREFER_HIGH as the value for Restriction Usage. The higher the preference, the farther the tool will go out of its way to travel on the roads associated with the restriction. | Record Set |
populate_route_lines (Optional) |
When the Route Shape parameter is set to True Shape, the generalization of the route shape can be further controlled using the appropriate values for the Route Line Simplification Tolerance parameters. No matter which value you choose for the Route Shape parameter, the best routes are always determined by minimizing the travel along the streets, never using the straight-line distance. This means that only the route shapes are different, not the underlying streets that are searched when finding the route. | Boolean |
route_line_simplification_tolerance (Optional) | Specify by how much you want to simplify the route geometry. The value you provide for this parameter is ignored unless Travel Mode is set to Custom, which is the default value. The tool also ignores this parameter if the populate_route_lines parameter is unchecked (False). Simplification maintains critical points on a route, such as turns at intersections, to define the essential shape of the route and removes other points. The simplification distance you specify is the maximum allowable offset that the simplified line can deviate from the original line. Simplifying a line reduces the number of vertices that are part of the route geometry. This improves the tool execution time. | Linear Unit |
populate_directions (Optional) | Specify whether the tool should generate driving directions for each route.
| Boolean |
directions_language (Optional) | Specify the language that should be used when generating driving directions. This parameter is used only when the populate_directions parameter is checked, or set to True. The parameter value can be specified using one of the following two- or five-character language codes:
If an unsupported language code is specified, the tool returns the directions using the default language, English. | String |
directions_style_name (Optional) | Specify the name of the formatting style for the directions. This parameter is used only when the Populate Directions parameter is checked, or set to True. The parameter can be specified using the following values:
| String |
travel_mode (Optional) | Choose the mode of transportation to model in the analysis.
For modeling a custom truck mode, you would follow the steps listed below.
For modeling a pedestrian with specific routing requirements, you would follow the same procedure as setting up a custom truck mode, but with the following differences:
| String |
impedance (Optional) | Specify the impedance, which is a value that represents the effort or cost of traveling along road segments or on other parts of the transportation network. Travel time is an impedance; a car taking one minute to travel a mile along an empty road is an example of impedance. Travel times can vary by travel mode—a pedestrian may take more than 20 minutes to walk the same mile—so it is important to choose the right impedance for the travel mode you are modeling. Choose from the following impedance values:
The value you provide for this parameter is ignored unless Travel Mode is set to Custom, which is the default value. | String |
Environments
This tool does not use any geoprocessing environments