ArcGIS Desktop

  • ArcGIS Pro
  • ArcMap

  • My Profile
  • Help
  • Sign Out
ArcGIS Desktop

ArcGIS Online

The mapping platform for your organization

ArcGIS Desktop

A complete professional GIS

ArcGIS Enterprise

GIS in your enterprise

ArcGIS Developers

Tools to build location-aware apps

ArcGIS Solutions

Free template maps and apps for your industry

ArcGIS Marketplace

Get apps and data for your organization

  • Documentation
  • Support
Esri
  • Sign In
user
  • My Profile
  • Sign Out

ArcMap

  • Home
  • Get Started
  • Map
  • Analyze
  • Manage Data
  • Tools
  • Extensions

Understanding disjunctive kriging

Available with Geostatistical Analyst license.

Disjunctive kriging assumes the model

f(Z(s)) = µ1 + ε(s),

where µ1 is an unknown constant and f(Z(s)) is an arbitrary function of Z(s). Notice that you can write f(Z(s)) = I(Z(s) > ct), so indicator kriging is a special case of disjunctive kriging. In Geostatistical Analyst, you can predict either the value itself or an indicator with disjunctive kriging.

In Geostatistical Analyst, the functions g(Z(s0)) available are simply Z(s0) itself and I(Z(s0) > ct). In general, disjunctive kriging tries to do more than ordinary kriging. While the rewards may be greater, so are the costs. Disjunctive kriging requires the bivariate normality assumption and approximations to the functions fi(Z(si)); the assumptions are difficult to verify, and the solutions are mathematically and computationally complicated.

Disjunctive kriging can use either semivariograms or covariances (the mathematical forms used to express autocorrelation) and transformations, but it cannot allow for measurement error.

ArcGIS Desktop

  • Home
  • Documentation
  • Support

ArcGIS

  • ArcGIS Online
  • ArcGIS Desktop
  • ArcGIS Enterprise
  • ArcGIS
  • ArcGIS Developer
  • ArcGIS Solutions
  • ArcGIS Marketplace

About Esri

  • About Us
  • Careers
  • Esri Blog
  • User Conference
  • Developer Summit
Esri
Tell us what you think.
Copyright © 2021 Esri. | Privacy | Legal