ArcGIS Desktop

  • ArcGIS Pro
  • ArcMap

  • My Profile
  • Help
  • Sign Out
ArcGIS Desktop

ArcGIS Online

The mapping platform for your organization

ArcGIS Desktop

A complete professional GIS

ArcGIS Enterprise

GIS in your enterprise

ArcGIS Developers

Tools to build location-aware apps

ArcGIS Solutions

Free template maps and apps for your industry

ArcGIS Marketplace

Get apps and data for your organization

  • Documentation
  • Support
Esri
  • Sign In
user
  • My Profile
  • Sign Out

ArcMap

  • Home
  • Get Started
  • Map
  • Analyze
  • Manage Data
  • Tools
  • Extensions

Understanding ordinary kriging

Available with Geostatistical Analyst license.

Ordinary kriging assumes the model

Z(s) = µ + ε(s),

where µ is an unknown constant. One of the main issues concerning ordinary kriging is whether the assumption of a constant mean is reasonable. Sometimes there are good scientific reasons to reject this assumption. However, as a simple prediction method, it has remarkable flexibility. The following figure is an example in one spatial dimension:

Ordinary kriging with one spatial dimension

It looks like the data is elevation values collected from a line transect through a valley and over a mountain. It also looks like the data is more variable on the left and becomes smoother on the right. In fact, this data was simulated from the ordinary kriging model with a constant mean µ. The true but unknown mean is given by the dashed line. Thus, ordinary kriging can be used for data that seems to have a trend. There is no way to decide, based on the data alone, whether the observed pattern is the result of autocorrelation—among the errors ε(s) with µ constant—or trend, with µ(s) changing with s.

Ordinary kriging can use either semivariograms or covariances (which are the mathematical forms you use to express autocorrelation), use transformations and remove trends, and allow for measurement error.

Related topics

  • Using ordinary kriging to create a prediction map
  • Using ordinary kriging to create a prediction standard error map
  • Creating a prediction map using ordinary kriging with a data transformation
  • Using ordinary kriging with detrending to create a prediction map

ArcGIS Desktop

  • Home
  • Documentation
  • Support

ArcGIS

  • ArcGIS Online
  • ArcGIS Desktop
  • ArcGIS Enterprise
  • ArcGIS
  • ArcGIS Developer
  • ArcGIS Solutions
  • ArcGIS Marketplace

About Esri

  • About Us
  • Careers
  • Esri Blog
  • User Conference
  • Developer Summit
Esri
Tell us what you think.
Copyright © 2021 Esri. | Privacy | Legal