This document is archived and information here might be outdated.  Recommended version.

IEllipticArc.PutCoordsByAngle Method (ArcObjects .NET 10.8 SDK)
 ArcObjects Help for .NET developers > ArcObjects Help for .NET developers > ArcObjects namespaces > Geometry > ESRI.ArcGIS.Geometry > Interfaces > IE > IEllipticArc Interface > IEllipticArc.PutCoordsByAngle Method
 ArcGIS Developer Help

# IEllipticArc.PutCoordsByAngle Method

Sets the center point, starting angle, signed central angle, angle of rotation, ratio of the minor axis to the major axis, and axes.

```[Visual Basic .NET]
Public Sub PutCoordsByAngle ( _
ByVal ellipseStd As Boolean, _
ByVal Center As IPoint, _
ByVal FromAngle As Double, _
ByVal CentralAngle As Double, _
ByVal rotationAngle As Double, _
ByVal semiMajor As Double, _
ByVal minorMajorRatio As Double _
)
```
```[C#]
public void PutCoordsByAngle (
bool ellipseStd,
IPoint Center,
double FromAngle,
double CentralAngle,
double rotationAngle,
double semiMajor,
double minorMajorRatio
);
```
```[C++]
HRESULT PutCoordsByAngle(
VARIANT_BOOL ellipseStd,
IPoint* Center,
double FromAngle,
double CentralAngle,
double rotationAngle,
double semiMajor,
double minorMajorRatio
);
```
```[C++]
Parameters
ellipseStd
ellipseStd is a parameter of type bool
Center
Center is a parameter of type IPoint*
FromAngle
FromAngle is a parameter of type double
CentralAngle
CentralAngle is a parameter of type double
rotationAngle
rotationAngle is a parameter of type double
semiMajor
semiMajor is a parameter of type double
minorMajorRatio
minorMajorRatio is a parameter of type double
```

#### Product Availability

Available with ArcGIS Engine, ArcGIS Desktop, and ArcGIS Server.

#### Description

Creates an Elliptic Arc given the EllipseStd value, Center Point, From Angle, Central Angle, Rotation Angle, semi-Major Axis length, and Minor Axis to Major Axis Ratio.  If EllipseStd = TRUE, the From Angle is relative to the rotated semi-Major Axis rather than the X-Axis.

#### Remarks

This is the recommended way to create an arbitrary Elliptic Arc.  However, due to numeric accuracy limitations of computers and trigonometric functions, the From and To Points may be very slightly offset from the expected coordinates.  This is important to keep in mind when attempting to connect the endpoints to other segments.