Disponible con una licencia de Spatial Analyst.
Resumen
Determina las ubicaciones de superficies de ráster visibles a un conjunto de entidades de observación.
Ilustración
Uso
Determinar los puntos de observación es un proceso que requiere muchos recursos informáticos. El tiempo de procesamiento depende de la resolución. En los estudios preliminares, es posible que desee utilizar un tamaño de celda más grueso para reducir la cantidad de celdas de la entrada. Utilice el ráster de resolución completa cuando los resultados finales estén listos para ser generados.
Si en el ráster de entrada hay ruido no deseado causado por los errores de muestreo, puede suavizar el ráster con un filtro de paso bajo, como la opción Media de Estadísticas focalizadas, antes de ejecutar esta herramienta.
La visibilidad de cada centro de celda se calcula comparando el ángulo de altitud hacia el centro de celda con el ángulo de altitud hacia el horizonte local. El horizonte local se obtiene teniendo en cuenta el terreno que interviene entre el punto de observación y el centro de la celda actual. Si el punto se encuentra por encima del horizonte local, se considera visible.
La herramienta proporciona un ráster de salida sobre el nivel del suelo (AGL) opcional. Cada celda del ráster de salida AGL registra la altura mínima que se debe agregar a esa celda para que resulte visible al menos para un observador.
Cuando las entidades de observador de entrada contienen varios observadores, el valor de salida es el mínimo de los valores de AGL de todos los observadores individuales.
Cuando el ráster de entrada se deba remuestrear, se utilizará la técnica bilineal. Un ejemplo en el que se debe remuestrear un ráster de entrada se produce cuando el sistema de coordenadas de salida, la extensión o el tamaño de celda es diferente del de entrada.
Consulte Entornos de análisis y Spatial Analyst para obtener detalles adicionales sobre los entornos de geoprocesamiento válidos para esta herramienta.
Sintaxis
Viewshed (in_raster, in_observer_features, {z_factor}, {curvature_correction}, {refractivity_coefficient}, {out_agl_raster})
Parámetro | Explicación | Tipo de datos |
in_raster | Ráster de entrada de superficie. | Raster Layer |
in_observer_features | La clase de entidad que identifica las ubicaciones del observador. La entrada puede ser entidades de punto o polilínea. | Feature Layer |
z_factor (Opcional) | Número de unidades x, y de suelo en una superficie de unidades z. El factor z ajusta las unidades de medida para las unidades z cuando son diferentes de las unidades x, y de la superficie de entrada. Los valores z de la superficie de entrada se multiplican por el factor z al calcular la superficie de salida final. Si las unidades z y las unidades x,y están en las mismas unidades de medida, el factor z es 1. Esta es la opción predeterminada. Si las unidades x,y y las unidades z están en diferentes unidades de medida, el factor z se debe establecer en el factor adecuado o los resultados serán incorrectos. Por ejemplo, si las unidades z son pies y las unidades x, y son metros, debe utilizar un factor z de 0,3048 para convertir las unidades z de pies a metros (1 pie = 0,3048 metros). | Double |
curvature_correction (Opcional) | Permite correcciones en la curvatura de la tierra.
| Boolean |
refractivity_coefficient (Opcional) | Coeficiente de la refracción de la luz visible en el aire. El valor predeterminado es 0.13. | Double |
out_agl_raster (Opcional) | El ráster de nivel sobre el suelo (AGL) de salida. El resultado del AGL es un ráster en el que cada valor de celda es la altura mínima que se debe agregar a una celda por lo demás no visible para que resulte visible al menos para un observador. Las celdas que ya estaban visibles tendrán un valor de 0 en este ráster de salida. | Raster Dataset |
Valor de retorno
Nombre | Explicación | Tipo de datos |
out_raster | El ráster de salida. La salida solo registrará la cantidad de veces que los puntos de observación de entrada (o vértices para polilíneas) pueden ver cada ubicación de celda en el ráster de superficie de entrada. La frecuencia de observación se registrará en el elemento VALOR, en la tabla de atributos del ráster de salida. | Raster |
Muestra de código
Ejemplo 1 de Cuenca visual (ventana de Python)
En este ejemplo se determinan las ubicaciones de superficie visibles para un conjunto de observadores definidos en un shapefile.
import arcpy
from arcpy import env
from arcpy.sa import *
env.workspace = "C:/sapyexamples/data"
outViewshed = Viewshed("elevation","observers.shp",2,"CURVED_EARTH",0.15)
outViewshed.save("C:/sapyexamples/output/outvwshd01")
Ejemplo 2 de Cuenca visual (secuencia de comandos independiente)
En este ejemplo se determinan las ubicaciones de superficie visibles para un conjunto de observadores definidos en un shapefile.
# Name: Viewshed_Ex_02.py
# Description: Determines the raster surface locations visible to a set of
# observer features.
# Requirements: Spatial Analyst Extension
# Import system modules
import arcpy
from arcpy import env
from arcpy.sa import *
# Set environment settings
env.workspace = "C:/sapyexamples/data"
# Set local variables
inRaster = "elevation"
inObserverFeatures = "observers.shp"
zFactor = 2
useEarthCurvature = "CURVED_EARTH"
refractivityCoefficient = 0.15
# Check out the ArcGIS Spatial Analyst extension license
arcpy.checkOutExtension("Spatial")
# Execute Viewshed
outViewshed = Viewshed(inRaster, inObserverFeatures, zFactor,
useEarthCurvature, refractivityCoefficient)
# Save the output
outViewshed.save("C:/sapyexamples/output/outvwshd02")
Entornos
Información sobre licencias
- ArcGIS Desktop Basic: Requiere Spatial Analyst o 3D Analyst
- ArcGIS Desktop Standard: Requiere Spatial Analyst o 3D Analyst
- ArcGIS Desktop Advanced: Requiere Spatial Analyst o 3D Analyst