ArcGIS Desktop

  • ArcGIS Pro
  • ArcMap

  • My Profile
  • Ayuda
  • Sign Out
ArcGIS Desktop

ArcGIS Online

La plataforma de representación cartográfica para tu organización

ArcGIS Desktop

Un completo SIG profesional

ArcGIS Enterprise

SIG en tu empresa

ArcGIS Developers

Herramientas para crear aplicaciones basadas en la ubicación

ArcGIS Solutions

Plantillas de aplicaciones y mapas gratuitas para tu sector

ArcGIS Marketplace

Obtén aplicaciones y datos para tu organización.

  • Documentación
  • Soporte
Esri
  • Iniciar sesión
user
  • Mi perfil
  • Cerrar sesión

ArcMap

  • Inicio
  • Introducción
  • Cartografiar
  • Analizar
  • Administrar datos
  • Herramientas
  • Extensiones

Normal score transformation

Disponible con una licencia de Geostatistical Analyst.

  • Approximation methods

Some interpolation and simulation methods require the input data to be normally distributed (see Examine the distribution of your data for a list of these methods). The normal score transformation (NST) is designed to transform your dataset so that it closely resembles a standard normal distribution. It does this by ranking the values in your dataset from lowest to highest and matching these ranks to equivalent ranks generated from a normal distribution. Steps in the transformation are as follows: your dataset is sorted and ranked, an equivalent rank from a standard normal distribution is found for each rank from your dataset, and the normal distribution values associated with those ranks make up the transformed dataset. The ranking process can be done using the frequency distribution or the cumulative distribution of the datasets.

Examples showing histograms and cumulative distributions before and after a normal score transformation was applied are shown below:

Histograms before and after a normal score transformation
Histograms before and after a normal score transformation

Cumulative distributions before and after a normal score transformation
Cumulative distributions before and after a normal score transformation

Approximation methods

In Geostatistical Analyst, there are four approximation methods: direct, linear, Gaussian kernels, and multiplicative skewing. The direct method uses the observed cumulative distribution, the linear method fits lines between each step of the cumulative distribution, and the Gaussian kernels method approximates the cumulative distribution by fitting a linear combination of component cumulative normal distributions. Multiplicative skewing approximates the cumulative distribution by fitting a base distribution (Student's t, lognormal, gamma, empirical, and log empirical) that is then skewed by a fitted linear combination of beta distributions (the skewing is done with the inverse probability integral transformation). Lognormal, gamma, and log empirical base distributions can only be used for positive data, and the predictions are guaranteed to be positive. Akaike's Information Criterion (AIC) is provided to judge the quality of the fitted model.

After making predictions on the transformed scale, the software automatically transforms the predictions back to the original scale. The choice of approximation method depends on the assumptions you are willing to make and the smoothness of the approximation. The direct method is the least smooth and has the fewest assumptions, and the linear method is intermediate. The Gaussian kernels and multiplicative skewing methods have smooth reverse transformations but assume that the data distribution can be approximated by a finite combination of known distributions.

  • Learn more about the normal score and other data transformations
  • Learn more about transformations and trends

ArcGIS Desktop

  • Inicio
  • Documentación
  • Soporte

ArcGIS

  • ArcGIS Online
  • ArcGIS Desktop
  • ArcGIS Enterprise
  • ArcGIS
  • ArcGIS Developer
  • ArcGIS Solutions
  • ArcGIS Marketplace

Acerca de Esri

  • Quiénes somos
  • Empleo
  • Blog de Esri
  • Conferencia de usuarios
  • Cumbre de desarrolladores
Esri
Díganos su opinión.
Copyright © 2021 Esri. | Privacidad | Legal