ArcGIS for Desktop

  • Documentation
  • Tarification
  • Support

  • My Profile
  • Aide
  • Sign Out
ArcGIS for Desktop

ArcGIS Online

La plateforme cartographique de votre organisation

ArcGIS for Desktop

Un SIG professionnel complet

ArcGIS for Server

SIG dans votre entreprise

ArcGIS for Developers

Outils de création d'applications de localisation

ArcGIS Solutions

Modèles d'applications et de cartes gratuits pour votre secteur d'activité

ArcGIS Marketplace

Téléchargez des applications et des données pour votre organisation.

  • Documentation
  • Tarification
  • Support
Esri
  • Se connecter
user
  • Mon profil
  • Déconnexion

Help

  • Accueil
  • Commencer
  • Carte
  • Analyser
  • Gérer les données
  • Outils
  • Plus...

Understanding transformations and trends

Disponible avec une licence Geostatistical Analyst.

  • Transformation and trend for primary variable
  • Transformation and trend for secondary variable (cokriging)
  • Definitions and Appreviations

Kriging as a predictor does not require that your data have a normal distribution. However, as you see in Understanding different kriging models, normality is necessary to obtain quantile and probability maps for ordinary, simple, and universal kriging. When considering only predictors that are formed from weighted averages, kriging is the best unbiased predictor whether or not your data is normally distributed. However, if the data is normally distributed, kriging is the best predictor among all unbiased predictors, not only those that are weighted averages.

Kriging also relies on the assumption that all the random errors are second-order stationarity, which is an assumption that the random errors have zero mean and the covariance between any two random errors depends only on the distance and direction that separates them, not their exact locations.

Transformations and trend removal can help justify assumptions of normality and stationarity. Prediction using ordinary, simple, and universal kriging for general Box-Cox, arcsine, and log transformations is called trans-Gaussian kriging. Log transformation is a special case of Box-Cox transformation, but it has special prediction properties and is known as lognormal kriging.

Transformation and trend for primary variable

In the table below, the transformations and trend options available for each kriging method are shown for the primary variable. The table also shows whether transformation or trend removal is performed first when both are selected.

Kriging typeBALNSTTrend

Ordinary

Yes (1st if TR)

No

TR (2nd if BAL)

Simple

Yes

Yes

No

Universal

Yes (1st if T)

No

T (2nd if BAL)

Indicator

No

No

No

Probability*

No

No

No

Disjunctive

Yes (1st if TR)

Yes (2nd if TR)

TR (1st if NST, 2nd if BAL)

Primary variable transformations and trend options

*For probability kriging, the primary variable is composed of indicators of the original variable; the original variable is then considered a secondary variable for cokriging.

Transformation and trend for secondary variable (cokriging)

In the table below, the transformation and trend options available for each kriging method are shown for the secondary variable. The table also shows whether transformation or trend removal is performed first when both are selected.

Kriging typeBALNSTTrend

Ordinary

Yes (1st if TR)

No

TR (2nd if BAL)

Simple

Yes

Yes

No

Universal

Yes (1st if T)

No

T (2nd if BAL)

Indicator

No

No

No

Probability

Yes (1st if TR)

Yes

TR (2nd if BAL)

Disjunctive

Yes (1st if TR)

Yes (2nd if TR)

TR (1st if NST, 2nd if BAL)

Secondary variable transformation and trend options

Definitions and Appreviations

See the following for the meanings of the definitions and abbreviations used in the preceding tables.

Definitions

  • Primary variable: Variable to be predicted when using kriging or cokriging
  • Secondary variables: Covariables (not predicted) when using cokriging
  • Trend: Fixed effects composed of spatial coordinates used in a linear model

Abbreviations

  • BAL—Box-Cox, arcsine, and log transformations
  • NST—Normal score transformation
  • SV—Variable (covariables for cokriging)
  • T (internal trend)
  • TR—Removal (external trend)
Vous avez un commentaire à formuler concernant cette rubrique ?

ArcGIS for Desktop

  • Accueil
  • Documentation
  • Tarification
  • Support

ArcGIS Platform

  • ArcGIS Online
  • ArcGIS for Desktop
  • ArcGIS for Server
  • ArcGIS for Developers
  • ArcGIS Solutions
  • ArcGIS Marketplace

A propos d'Esri

  • A propos de la société
  • Carrières
  • Blog des initiés
  • Conférence des utilisateurs
  • Sommet des développeurs
Esri
© Copyright 2016 Environmental Systems Research Institute, Inc. | Confidentialité | Légal