ArcGIS for Desktop

  • Documentation
  • Tarification
  • Support

  • My Profile
  • Aide
  • Sign Out
ArcGIS for Desktop

ArcGIS Online

La plateforme cartographique de votre organisation

ArcGIS for Desktop

Un SIG professionnel complet

ArcGIS for Server

SIG dans votre entreprise

ArcGIS for Developers

Outils de création d'applications de localisation

ArcGIS Solutions

Modèles d'applications et de cartes gratuits pour votre secteur d'activité

ArcGIS Marketplace

Téléchargez des applications et des données pour votre organisation.

  • Documentation
  • Tarification
  • Support
Esri
  • Se connecter
user
  • Mon profil
  • Déconnexion

Help

  • Accueil
  • Commencer
  • Carte
  • Analyser
  • Gérer les données
  • Outils
  • Plus...

Understanding universal kriging

Disponible avec une licence Geostatistical Analyst.

Universal kriging assumes the model

Z(s) = µ(s) + ε(s),

where µ(s) is some deterministic function. For example, in the following figure, which has the same data that was used for ordinary kriging concepts, the observed data is given by the solid circles.

Universal kriging

A second-order polynomial is the trend—long dashed line—which is µ(s). If you subtract the second-order polynomial from the original data, you obtain the errors, ε(s), which are assumed to be random. The mean of all ε(s) is 0. Conceptually, the autocorrelation is now modeled from the random errors ε(s). Of course, you could have fit a linear trend, a cubic polynomial, or any number of other functions. The figure above looks just like a polynomial regression from any basic statistics course. In fact, that is what universal kriging is. You are doing regression with the spatial coordinates as the explanatory variables. However, instead of assuming the errors ε(s) are independent, you model them to be autocorrelated. The advice is the same as for ordinary kriging: there is no way to decide, based on the data alone, on the proper decomposition.

Universal kriging can use either semivariograms or covariances (which are the mathematical forms you use to express autocorrelation), use transformations, and allow for measurement error.

Thèmes connexes

  • Using universal kriging to create a prediction map
  • Using universal kriging to create a prediction standard error map
Vous avez un commentaire à formuler concernant cette rubrique ?

ArcGIS for Desktop

  • Accueil
  • Documentation
  • Tarification
  • Support

ArcGIS Platform

  • ArcGIS Online
  • ArcGIS for Desktop
  • ArcGIS for Server
  • ArcGIS for Developers
  • ArcGIS Solutions
  • ArcGIS Marketplace

A propos d'Esri

  • A propos de la société
  • Carrières
  • Blog des initiés
  • Conférence des utilisateurs
  • Sommet des développeurs
Esri
© Copyright 2016 Environmental Systems Research Institute, Inc. | Confidentialité | Légal