ArcGIS Desktop

  • ArcGIS Pro
  • ArcMap

  • My Profile
  • Aide
  • Sign Out
ArcGIS Desktop

ArcGIS Online

La plateforme cartographique de votre organisation

ArcGIS Desktop

Un SIG professionnel complet

ArcGIS Enterprise

SIG dans votre entreprise

ArcGIS for Developers

Outils de création d'applications de localisation

ArcGIS Solutions

Modèles d'applications et de cartes gratuits pour votre secteur d'activité

ArcGIS Marketplace

Téléchargez des applications et des données pour votre organisation.

  • Documentation
  • Support
Esri
  • Se connecter
user
  • Mon profil
  • Déconnexion

ArcMap

  • Accueil
  • Commencer
  • Carte
  • Analyser
  • Gérer les données
  • Outils
  • Extensions

Kriging in Geostatistical Analyst

Disponible avec une licence Geostatistical Analyst.

Kriging assumes that at least some of the spatial variation observed in natural phenomena can be modeled by random processes with spatial autocorrelation, and require that the spatial autocorrelation be explicitly modeled. Kriging techniques can be used to describe and model spatial patterns, predict values at unmeasured locations, and assess the uncertainty associated with a predicted value at the unmeasured locations.

The Geostatistical Wizard offers several types of kriging, which are suitable for different types of data and have different underlying assumptions:

  • Ordinary
  • Simple
  • Universal
  • Indicator
  • Probability
  • Disjunctive
  • Empirical Bayesian
  • Areal Interpolation

These methods can be used to produce the following surfaces:

  • Maps of kriging predicted values
  • Maps of kriging standard errors associated with predicted values
  • Maps of probability, indicating whether or not a predefined critical level was exceeded
  • Maps of quantiles for a predetermined probability level

The exceptions to this are:

  1. Indicator and Probability kriging, which produce the following:
    • Maps of probability, indicating whether or not a predefined critical level was exceeded
    • Maps of standard errors of indicators
  2. Areal Interpolation, which produces the following:
    • Maps of predicted values
    • Maps of standard errors associated with predicted values

There are several components of geostatistical models. The most important are to examine the data through exploratory spatial data analysis (ESDA) and variography, build a kriging model to suit your needs (see what are the different kriging models?), and check that the results are accurate by performing cross validation and validation and comparing alternate models to choose the best one.

ArcGIS Desktop

  • Accueil
  • Documentation
  • Support

ArcGIS Platform

  • ArcGIS Online
  • ArcGIS Desktop
  • ArcGIS Enterprise
  • ArcGIS for Developers
  • ArcGIS Solutions
  • ArcGIS Marketplace

A propos d'Esri

  • A propos de la société
  • Carrières
  • Blog d’Esri
  • Conférence des utilisateurs
  • Sommet des développeurs
Esri
Donnez-nous votre avis.
Copyright © 2019 Esri. | Confidentialité | Légal