ArcGIS Desktop

  • ArcGIS Pro
  • ArcMap

  • My Profile
  • Aide
  • Sign Out
ArcGIS Desktop

ArcGIS Online

La plateforme cartographique de votre organisation

ArcGIS Desktop

Un SIG professionnel complet

ArcGIS Enterprise

SIG dans votre entreprise

ArcGIS for Developers

Outils de création d'applications de localisation

ArcGIS Solutions

Modèles d'applications et de cartes gratuits pour votre secteur d'activité

ArcGIS Marketplace

Téléchargez des applications et des données pour votre organisation.

  • Documentation
  • Support
Esri
  • Se connecter
user
  • Mon profil
  • Déconnexion

ArcMap

  • Accueil
  • Commencer
  • Carte
  • Analyser
  • Gérer les données
  • Outils
  • Extensions

Analyse de grappes et de valeurs aberrantes (Anselin Local Morans I)

  • Résumé
  • Illustration
  • Utilisation
  • Syntaxe
  • Exemple de code
  • Environnements
  • Informations de licence

Résumé

A partir d'un ensemble d'entités pondérées, identifie des points chauds, des points froids et des points aberrants spatiaux statistiquement significatifs à l'aide de l'outil statistique Anselin Local Morans I.

Pour en savoir plus sur le fonctionnement de l'analyse de grappes et de valeurs aberrantes (Anselin Local Morans I)

Illustration

Illustration de l'outil Analyse de grappes et de valeurs aberrantes

Utilisation

  • Cet outil permet de créer une nouvelle classe d'entités en sortie avec les attributs suivants pour chaque entité de la classe d'entités en entrée : index Local Morans I, score z, pseudo valeur de p et type grappe-point aberrant (COType).

  • Les scores z et les valeurs p sont des mesures de signification statistique qui indiquent si l'on peut ou non rejeter l'hypothèse nulle, entité par entité. Ces mesures indiquent en effet si la similarité apparente (agrégation spatiale de valeurs élevées ou faibles) ou la dissemblance apparente (point spatial aberrant) est plus prononcée qu'elle ne devrait l'être dans le cadre d'une répartition aléatoire. Les valeurs p et les scores z de la classe d'entités en sortie ne reflètent aucune correction FDR (False Discovery Rate).

  • Un score z élevé positif pour une entité indique que les entités voisines ont des valeurs similaires (des valeurs élevées ou faibles). Le champ COType de la classe d'entités en sortie sera HH pour une grappe statistiquement significative de valeurs élevées et LL pour une grappe statistiquement significative de valeurs faibles.

  • Un faible score z négatif (par exemple, inférieur à 3,96) pour une entité indique un point aberrant de données spatiales statistiquement significatif. Le champ COType de la classe d'entités en sortie indique si l'entité a une valeur élevée et est entourée d'entités de valeurs faibles (HL) ou si l'entité a une valeur faible et est entourée d'entités de valeurs élevées (LH).

  • Le champ COType indique toujours les grappes et valeurs aberrantes statistiquement significatives pour un niveau de confiance de 95 pour cent. Seules les entités statistiquement significatives ont des valeurs dans le champ COType. Lorsque vous sélectionnez le paramètre facultatif Appliquer la correction FDR (False Discovery Rate), la signification statistique repose sur un niveau de confiance corrigé de 95 pour cent.

  • Le rendu par défaut de la classe d'entités en sortie repose sur les valeurs du champ COType.

  • Les permutations permettent de déterminer la probabilité de trouver la distribution spatiale réelle des valeurs que vous analysez. Pour chaque permutation, les valeurs voisines autour de chaque entité sont réorganisées de manière aléatoire et la valeur de l'index Local Moran's I est calculée. Le résultat est une distribution de référence des valeurs qui est ensuite comparée à la valeur Moran's I réelle observée pour déterminer la probabilité que la valeur observée se trouve dans la distribution aléatoire. La valeur par défaut est de 499 permutations. Cependant, vous pouvez améliorer la distribution aléatoire en augmentant le nombre de permutations, ce qui augmente la précision de la pseudo valeur de p.

  • Si le paramètre Number_of_Permutations est défini sur 0, le résultat est une valeur de p traditionnelle et non une pseudo valeur de p. Le score z repose sur le calcul de l'hypothèse nulle aléatoire. Pour plus d'informations sur les scores z et les valeurs de p, reportez-vous à la rubrique Qu'est-ce qu'un score z ? Qu'est-ce qu'une valeur p ?

  • Lorsque la Classe d'entités en entrée n'est pas projetée (c'est-à-dire, lorsque les coordonnées sont exprimées en degrés, minutes et secondes) ou lorsque le système de coordonnées en sortie est un Système de coordonnées géographiques, les distances sont calculées à l'aide des mesures à la corde. Les mesures de distance à la corde permettent de calculer rapidement et de fournir une bonne estimation de distance géodésiques réelles, du moins pour les points situés à environ trente degrés les uns des autres. Les distances de corde reposent sur un sphéroïde aplati. Si l'on prend deux points sur la surface de la Terre, la distance de corde qui les sépare est la longueur d'une ligne qui traverse la Terre en trois dimensions pour relier ces deux points. Les distances à la corde sont exprimées en mètres.

    Attention :

    Veillez à projeter les données si votre zone d'étude s'étend au-delà de 30 degrés. Les distances à la corde ne constituent pas une bonne estimation des distance géodésiques au-delà de 30 degrés.

  • Lorsque vous utilisez des distances à la corde dans l'analyse, le paramètre Canal distance ou distance seuil, s'il est spécifié, doit être exprimé en mètres.

  • Héritage :

    Avant ArcGIS 10.2.1, un message d'avertissement s'affichait si les paramètres et les paramètres d'environnement sélectionnés devaient entraîner des calculs avec des coordonnées géographiques (degrés, minutes, secondes). Cet avertissement vous conseillait de projeter vos données dans un système de coordonnées projetées, de manière que les calculs de distance soient précis. Cependant, depuis la version 10.2.1, cet outil calcule les distances à la corde à chaque fois que des calculs de système de coordonnées géographiques sont nécessaires.

    Attention :

    En raison de ce changement, il n'est pas exclus que vous deviez modifier les modèles qui incorporent cet outil si ceux-ci ont été créés avant ArcGIS 10.2.1 et s'ils contiennent des valeurs de paramètres de système de coordonnées géographiques codées en dur. Si, par exemple, un paramètre de distance est définie sur une valeur telle que 0,0025 degrés, vous devez convertir cette valeur constante de degrés en mètres et enregistrer à nouveau votre modèle.

  • Pour les entités linéaires et surfaciques, les centroïdes d'entité sont utilisés dans les calculs de distance. Pour les multi-points, les polylignes ou les polygones comprenant plusieurs parties, le centroïde est calculé à l'aide du centre moyen pondéré de toutes les parties d'entité. La pondération pour les entités ponctuelles est de 1 ; pour les entités linéaires, elle correspond à la longueur et pour les entités surfaciques, à la superficie.

  • Le Champ en entrée doit contenir différentes valeurs. Les formules mathématiques de cette statistique requièrent que la variable analysée fluctue quelque peu ; elle ne peut pas aboutir si toutes les valeurs en entrée sont égales à 1, par exemple. Si vous souhaitez utiliser cet outil pour analyser le modèle spatial de données d'incident, vous devrez peut-être agréger les données d'incident. Vous pouvez également utiliser l'outil Analyse de points chauds optimisée pour analyser le modèle spatial de données d'incident.

    Remarque :

    Les données d'incidents sont des points représentant des événements (crime, accidents de la circulation) ou des objets (arbres, points de vente) où l'accent est mis sur la présence ou l'absence, plutôt que sur un attribut mesuré associé à chaque point.

  • Le choix du paramètre Conceptualisation de relations spatiales doit refléter les relations inhérentes entre les entités que vous analysez. Plus la modélisation de l'interaction des entités dans l'espace est réaliste, plus les résultats sont précis. Des recommandations sont présentées dans la section Sélection d'une conceptualisation de relations spatiales : meilleures pratiques. Voici quelques conseils supplémentaires :

    • FIXED_DISTANCE_BAND

      La valeur par défaut Canal distance ou distance seuil permet de s'assurer que chaque entité possède au moins un voisin. Mais bien souvent, cette valeur par défaut n'est pas la distance la plus appropriée à l'analyse. Reportez-vous à la rubrique Sélection d'une valeur de canal de distance constante pour connaître les stratégies permettant de définir une valeur de canal de distance appropriée pour votre analyse.

    • INVERSE_DISTANCE ou INVERSE_DISTANCE_SQUARED

      Si une valeur égale à zéro est entrée pour le paramètre Canal distance ou distance seuil, toutes les entités sont considérées voisines de toutes les autres entités ; si aucune valeur n'est spécifiée pour ce paramètre, la distance par défaut est appliquée.

      Les pondérations pour les distances inférieures à 1 deviennent instables lorsqu'elles sont inversées. Par conséquent, la pondération d'entités séparées par moins d'une unité de distance se voit affecter la valeur 1.

      Pour les options de type inverse de la distance (INVERSE_DISTANCE, INVERSE_DISTANCE_SQUARED ou ZONE_OF_INDIFFERENCE), toute paire de points coïncidents se voit affecter une pondération de 1 pour éviter une division par zéro. Ainsi, aucune entité n'est exclue de l'analyse.

  • Des options supplémentaires pour le paramètre Conceptualisation de relations spatiales (y compris les relations spatio-temporelles) sont proposées par les outils Générer la matrice de pondérations spatiales ou Générer les pondérations spatiales de réseau. Pour tirer parti de ces options, utilisez l'un de ces outils afin de créer le fichier de matrice de pondérations spatiales avant l'analyse. Sélectionnez GET_SPATIAL_WEIGHTS_FROM_FILE comme valeur du paramètre Conceptualisation de relations spatiales. Enfin, pour le paramètre Fichier de matrice de pondérations, spécifiez le chemin d'accès au fichier de matrice de pondérations spatiales que vous avez créé.

  • Pour plus d'informations sur l'analyse d'agrégats spatio-temporels, consultez la documentation Analyse spatio-temporelle.

  • Les couches peuvent permettre de définir la classe d'entités en entrée. Lorsque vous utilisez une couche avec une sélection, seules les entités sélectionnées sont comprises dans l'analyse.

  • Si vous utilisez un fichier de matrice de pondérations portant une extension .swm, cet outil attend un fichier de matrice de pondérations spatiales créé à l'aide des outils Générer la matrice de pondérations spatiales ou Générer les pondérations spatiales de réseau. Dans le cas contraire, cet outil attend un fichier de matrice de pondérations spatiales au format ASCII. Dans certains cas, le comportement diffère selon le type de fichier de matrice de pondérations spatiales utilisé :

    • Fichiers ASCII de matrice de pondérations spatiales :
      • Les pondérations sont utilisées en l'état. Les relations d'entité à entité manquantes sont considérées comme nulles.
      • Si les pondérations sont standardisées par lignes, les résultats des analyses réalisées sur les ensembles de sélection risquent d'être incorrects. Si vous devez effectuer votre analyse sur un ensemble de sélection, convertissez le fichier ASCII de pondérations spatiales en fichier SWM. Pour ce faire, chargez les données ASCII dans une table, puis utilisez l'option CONVERT_TABLE de l'outil Générer la matrice de pondérations spatiales.
    • Fichier SWM de matrice de pondérations spatiales :
      • Si les pondérations sont standardisées par lignes, elles seront standardisées à nouveau pour les ensembles de sélection. Dans le cas contraire, les pondérations sont utilisées en l'état.

  • L'exécution de l'analyse avec un fichier de matrice de pondérations spatiales au format ASCII exige beaucoup de mémoire. Pour les analyses portant sur plus de 5 000 entités, envisagez de convertir votre fichier ASCII de matrice de pondérations spatiales en fichier au format SWM. En premier lieu, placez vos pondérations ASCII dans une table avec mise en forme (à l'aide d'Excel, par exemple). Exécutez ensuite l'outil Générer la matrice de pondérations spatiales en utilisant l'option CONVERT_TABLE pour le paramètre Conceptualisation de relations spatiales. La sortie sera un fichier SWM de matrice de pondérations spatiales.

  • La classe d'entités en sortie est ajoutée automatiquement à la table des matières et le rendu par défaut est appliqué au champ COType. Le rendu appliqué est défini par un fichier de couche dans <ArcGIS>/Desktop10.x/ArcToolbox/Templates/Layers. Vous pouvez appliquer à nouveau le rendu par défaut, si nécessaire, en important la symbologie des couches modèle.

  • Le paramètre Classe d'entités en sortie comprend un champ SOURCE_ID qui vous permet de Joindre ce champ à la classe d'entités en entrée, si nécessaire.

  • La rubrique d'aide Modélisation de relations spatiales fournit des informations complémentaires sur les paramètres de cet outil.

  • Attention :

    Lorsque vous utilisez des fichiers de formes, n'oubliez pas qu'ils ne peuvent pas stocker de valeurs Null. Il se peut que des outils ou autres procédures qui créent des fichiers de formes à partir d'entrées autres que des fichiers de formes stockent ou interprètent des valeurs Null comme étant égales à zéro. Dans certains cas, les valeurs Null sont stockées sous forme de valeurs négatives très élevées dans les fichiers de formes. Cela peut aboutir à des résultats inattendus. Reportez-vous à la rubrique Remarques concernant le géotraitement pour la sortie de fichiers de formes pour plus d'informations.

    Héritage :

    Dans les versions antérieures à ArcGIS 10.0, la classe d'entités en sortie était une copie de la classe d'entités en entrée, à laquelle étaient rajoutés les champs de résultats de COType, score z et valeur de p. Dans ArcGIS 10.0 et les versions ultérieures, la classe d'entités en sortie inclut uniquement les résultats et les champs utilisés dans l'analyse.

  • Lorsque vous utilisez cet outil dans les scripts Python, l'objet de résultat renvoyé après l'exécution de l'outil comporte les sorties suivantes :

    PositionDescriptionType de données

    0

    Classe d'entités en sortie

    Classe d'entités

    1

    Nom du champ d'index

    Champ

    2

    Nom du champ ZScore

    Champ

    3

    Nom du champ de probabilité

    Champ

    4

    Nom de champ COType

    Champ

    5

    Nom du champ ID de la source

    Champ

Syntaxe

ClustersOutliers_stats (Input_Feature_Class, Input_Field, Output_Feature_Class, Conceptualization_of_Spatial_Relationships, Distance_Method, Standardization, {Distance_Band_or_Threshold_Distance}, {Weights_Matrix_File}, {Apply_False_Discovery_Rate__FDR__Correction}, {Number_of_Permutations})
ParamètreExplicationType de données
Input_Feature_Class

Classe d'entités pour laquelle l'analyse d'agrégat et de point aberrant est effectuée.

Feature Layer
Input_Field

Champ numérique à évaluer.

Field
Output_Feature_Class

Classe d'entités en sortie qui reçoit les champs de résultats.

Feature Class
Conceptualization_of_Spatial_Relationships

Indique comment les relations spatiales sont définies parmi les entités.

  • INVERSE_DISTANCE —Les entités voisines proches influencent plus fortement les calculs d'une entité cible que les entités qui sont éloignées.
  • INVERSE_DISTANCE_SQUARED —Identique à INVERSE_DISTANCE, mais la pente est plus prononcée et l'influence chute donc plus rapidement. De plus, seuls les voisins les plus proches d'une entité cible exercent une influence notable sur les calculs de cette entité.
  • FIXED_DISTANCE_BAND —Chaque entité est analysée dans le contexte des entités voisines. Les entités voisines situées en deçà de la distance critique spécifiée (Distance_Band_or_Threshold_Distance) reçoivent une pondération de 1 et exercent une influence sur les calculs de l'entité cible. Les entités voisines situées au-delà de la distance critique reçoivent une pondération de zéro et n'exercent aucune influence sur les calculs de l'entité cible.
  • ZONE_OF_INDIFFERENCE —Les entités situées en deçà de la distance critique spécifiée (Distance_Band_or_Threshold_Distance) d'une entité cible reçoivent une pondération de 1 et exercent une influence sur les calculs de cette entité. Une fois la distance critique dépassée, les pondérations (et l'influence exercée par une entité voisine sur les calculs d'une entité cible) diminuent avec la distance.
  • CONTIGUITY_EDGES_ONLY —Seules les entités surfaciques voisines qui partagent une limite ou se chevauchent influencent les calculs de l'entité surfacique cible.
  • CONTIGUITY_EDGES_CORNERS —Les entités surfaciques voisines qui partagent une limite, un nœud, ou qui se chevauchent influencent les calculs de l'entité surfacique cible.
  • GET_SPATIAL_WEIGHTS_FROM_FILE —Les relations spatiales sont définies par un fichier de pondérations spatiales spécifié. Le chemin d'accès au fichier de pondérations spatiales est donné par le paramètre Weights_Matrix_File.
String
Distance_Method

Spécifie le mode de calcul des distances de chaque entité avec les entités voisines.

  • EUCLIDEAN_DISTANCE —Distance en ligne droite entre deux points (distance à vol d'oiseau).
  • MANHATTAN_DISTANCE —Distance entre deux points mesurée le long des axes à angle droit (bloc de bâtiments) ; calculée en totalisant la différence (absolue) entre les coordonnées x et y.
String
Standardization

La standardisation par lignes est recommandée chaque fois que la répartition de vos entités est potentiellement influencée par la conception de l'échantillonnage ou un plan d'agrégation imposé.

  • NONE —Aucune standardisation de pondérations spatiales n'est appliquée.
  • ROW —Les pondérations spatiales sont standardisées ; chaque pondération est divisée par la somme des lignes (la somme des pondérations de toutes les entités voisines).
String
Distance_Band_or_Threshold_Distance
(Facultatif)

Spécifie une distance limite pour les options Inverse Distance et Fixed Distance. Les entités se trouvant à l'extérieur de la limite spécifiée pour une entité cible ne sont pas prises en compte dans les analyses pour cette entité. Cependant, pour Zone of Indifference, l'influence des entités situées hors de la distance donnée est réduite avec la distance, tandis que les entités se trouvant dans le seuil de distance sont considérées à part égale. La valeur de distance entrée doit être identique à celle du système de coordonnées en sortie.

Pour les conceptualisations d'inverse de la distance des relations spatiales, une valeur de zéro indique qu'aucune distance de seuil n'est appliquée ; lorsque ce paramètre n'est pas défini, une valeur de seuil par défaut est calculée et appliquée. Cette valeur par défaut est la distance euclidienne qui permet de s'assurer que chaque entité possède au moins un voisin.

Ce paramètre n'a aucun effet lorsque les conceptualisations spatiales Contiguïté polygonale ou Extraire les pondérations spatiales à partir du fichier sont sélectionnées.

Double
Weights_Matrix_File
(Facultatif)

Chemin d'accès à un fichier contenant des pondérations qui définissent les relations spatiales, et potentiellement les relations temporelles, entre des entités.

File
Apply_False_Discovery_Rate__FDR__Correction
(Facultatif)
  • APPLY_FDR —La signification statistique repose sur la correction FDR (False Discovery Rate) pour un niveau de confiance de 95 pour cent.
  • NO_FDR —Non sélectionné : les entités dont les valeurs p sont inférieures à 0,05 apparaissent dans le champ COType pour refléter les grappes ou les valeurs aberrantes statistiquement significatives à un niveau de confiance de 95 pour cent (par défaut).
Boolean
Number_of_Permutations
(Facultatif)

Nombre de permutations aléatoires pour le calcul des pseudo valeurs de p. Le nombre par défaut de permutations est de 499. Si vous choisissez 0 permutation, la valeur de p standard est calculée.

  • 0 —Les permutations ne sont pas utilisées et une valeur de p standard est calculée.
  • 99 —Avec 99 permutations, la pseudo valeur de p la plus petite possible est 0,01 et toutes les autres pseudo valeurs de p sont des multiples pairs de cette valeur.
  • 199 —Avec 199 permutations, la pseudo valeur de p la plus petite possible est 0,005 et toutes les autres pseudo valeurs de p possibles sont des multiples pairs de cette valeur.
  • 499 —Avec 499 permutations, la pseudo valeur de p la plus petite possible est 0,002 et toutes les autres pseudo valeurs de p sont des multiples pairs de cette valeur.
  • 999 —Avec 999 permutations, la pseudo valeur de p la plus petite possible est 0,001 et toutes les autres pseudo valeurs de p sont des multiples pairs de cette valeur.
  • 9999 —Avec 9999 permutations, la pseudo valeur de p la plus petite possible est 0,0001 et toutes les autres pseudo valeurs de p sont des multiples pairs de cette valeur.
Long

Sortie dérivée

NomExplicationType de données
Index_Field_Name
ZScore_Field_Name
Probability_Field
Cluster_Outlier_Type
Source_ID

Exemple de code

Exemple 1 d'utilisation de l'outil ClusterandOutlierAnalysis (fenêtre Python)

Le script de fenêtre Python suivant illustre l'utilisation de l'outil ClusterandOutlierAnalysis.

import arcpy
arcpy.env.workspace = "c:/data/911calls"
arcpy.ClustersOutliers_stats("911Count.shp", "ICOUNT","911ClusterOutlier.shp",
                             "GET_SPATIAL_WEIGHTS_FROM_FILE","EUCLIDEAN_DISTANCE", 
                             "NONE","#", "euclidean6Neighs.swm","NO_FDR", 499)
Exemple 2 d'utilisation de l'outil ClusterandOutlierAnalysis (script Python autonome)

Le script Python autonome ci-dessous illustre l'utilisation de l'outil ClusterandOutlierAnalysis.

# Analyze the spatial distribution of 911 calls in a metropolitan area
# using the Cluster-Outlier Analysis Tool (Anselin's Local Moran's I)
# Import system modules
import arcpy
# Set property to overwrite outputs if they already exist
arcpy.env.overwriteOutput = True
# Local variables...
workspace = r"C:\Data\911Calls"
try:
    # Set the current workspace 
    #  (to avoid having to specify the full path to the feature classes each time)
    arcpy.env.workspace = workspace
    # Copy the input feature class and integrate the points to snap
    # together at 500 feet
    # Process: Copy Features and Integrate
    cf = arcpy.CopyFeatures_management("911Calls.shp", "911Copied.shp")
    integrate = arcpy.Integrate_management("911Copied.shp #", "500 Feet")
    # Use Collect Events to count the number of calls at each location
    # Process: Collect Events
    ce = arcpy.CollectEvents_stats("911Copied.shp", "911Count.shp", "Count", "#")
    # Add a unique ID field to the count feature class
    # Process: Add Field and Calculate Field
    af = arcpy.AddField_management("911Count.shp", "MyID", "LONG", "#", "#", "#", "#",
                     														"NON_NULLABLE", "NON_REQUIRED", "#",
                     														"911Count.shp")
    
    cf = arcpy.CalculateField_management("911Count.shp", "MyID", "!FID!", "PYTHON")
    # Create Spatial Weights Matrix for Calculations
    # Process: Generate Spatial Weights Matrix... 
    swm = arcpy.GenerateSpatialWeightsMatrix_stats("911Count.shp", "MYID",
                        																											"euclidean6Neighs.swm",
                       																											 "K_NEAREST_NEIGHBORS",
                       															 												"#", "#", "#", 6) 
    # Cluster/Outlier Analysis of 911 Calls
    # Process: Local Moran's I
    clusters = arcpy.ClustersOutliers_stats("911Count.shp", "ICOUNT", 
                      																				  "911ClusterOutlier.shp", 
                        																				"GET_SPATIAL_WEIGHTS_FROM_FILE",
                        																				"EUCLIDEAN_DISTANCE", "NONE",
                       							 													"#", "euclidean6Neighs.swm", "NO_FDR", "499")
except arcpy.ExecuteError:
    # If an error occurred when running the tool, print out the error message.
    print(arcpy.GetMessages())

Environnements

  • Espace de travail courant
  • Espace de travail temporaire
  • Système de coordonnées en sortie
    Remarque :

    La géométrie de l'entité est projetée dans le système de coordonnées en sortie avant l'analyse, donc les valeurs entrées pour le paramètre Canal distance ou distance seuil doivent correspondre à celles spécifiées dans le système de coordonnées en sortie. Tous les calculs mathématiques sont basés sur la référence spatiale du système de coordonnées en sortie. Lorsque le système de coordonnées en sortie est exprimé en degrés, minutes et secondes, les distances géodésiques sont estimées à l'aide de distances à la corde en mètres.

  • Transformations géographiques
  • Noms de champ qualifiés
  • Valeurs Z en sortie
  • Valeur Z en sortie par défaut
  • Résolution Z
  • Tolérance Z
  • Valeurs M en sortie
  • Résolution M
  • Tolérance M
  • Résolution XY
  • Tolérance XY
  • Générateur de nombres aléatoires
    Remarque :

    Le type de générateur de nombres aléatoires utilisé est toujours Mersenne Twister.

Informations de licence

  • ArcGIS Desktop Basic: Oui
  • ArcGIS Desktop Standard: Oui
  • ArcGIS Desktop Advanced: Oui

Rubriques connexes

  • Modélisation de relations spatiales
  • Qu'est-ce qu'un score z ? Qu'est-ce qu'une valeur p ?
  • Pondérations spatiales
  • Présentation générale du jeu d'outils Appariement d'agrégats
  • Autocorrélation spatiale (Global Moran's I)
  • Analyse de point chaud (Getis-Ord Gi*)
  • Fonctionnement de l'analyse de grappes et de valeurs aberrantes (Anselin Local Morans I)
  • Analyse de points chauds optimisée
  • Autocorrélation spatiale incrémentielle
  • Calculer la bande de distance à partir du nombre de voisins
  • Convertir des données d'événements en données ponctuelles pondérées
  • Analyse de points aberrants optimisée

ArcGIS Desktop

  • Accueil
  • Documentation
  • Support

ArcGIS Platform

  • ArcGIS Online
  • ArcGIS Desktop
  • ArcGIS Enterprise
  • ArcGIS for Developers
  • ArcGIS Solutions
  • ArcGIS Marketplace

A propos d'Esri

  • A propos de la société
  • Carrières
  • Blog d’Esri
  • Conférence des utilisateurs
  • Sommet des développeurs
Esri
Donnez-nous votre avis.
Copyright © 2019 Esri. | Confidentialité | Légal