Доступно с лицензией Spatial Analyst.
Краткая информация
Выполняет Principal Component Analysis (PCA) на наборе каналов растра и создаёт один многоканальный растр в качестве выходных данных.
Более подробно о том, как работает инструмент Метод главных компонент
Использование
- Значение, установленное для числа главных компонент, определяет количество каналов главных компонент на выходном многоканальном растре. Число не может быть больше, чем общее количество каналов растра на входных данных. 
- Если многоканальный растр указан как один из входных для параметра Входные каналы растра (in_raster_bands в Python), будут обработаны все каналы. - Чтобы обработать выбранные каналы многоканального растра, сначала создайте новый набор растровых данных, состоящий только из необходимых каналов, с помощью инструмента Объединить каналы, затем укажите полученный набор как Входной растр (in_raster_bands в Python). 
- Каналы растра должны иметь общую область пересечения. При ее отсутствии возникнет ошибка и выходные данные созданы не будут. 
- Процентная дисперсия определяет количество собираемой каждым собственным числом дисперсии. Это может оказаться полезным при интерпретации результатов PCA. Если два собственных значения (каждый относящийся к каналам в выходном растре) собирает большинство дисперсии, будет приемлемо использовать этот поднабор каналов в последующем анализе, так как эти каналы смогут собрать большинство действий с исходным многоканальным набором данных. 
- При определении процентной дисперсии, каждое собственное число выполняет сбор, сумма собственных чисел указывается в следующей формуле: (собственное число * 100)/сумму. Первое собственное число (и соответствующий канал) собирает самую большую дисперсию; последующие собственные числа собирают дисперсию меньшего порядка. Суммарный процент дисперсии является последовательной суммой дисперсии, собранной каждый собственным значением. 
- См. раздел Параметры среды анализа и Spatial Analyst для получения дополнительной информации о среде геообработки данного инструмента. 
Синтаксис
PrincipalComponents (in_raster_bands, {number_components}, {out_data_file})| Параметр | Объяснение | Тип данных | 
| in_raster_bands [in_raster_band,...] | Входные каналы растров. Они могут быть целочисленными или с плавающей точкой. | Raster Layer | 
| number_components (Дополнительный) | Число главных компонент. Число должно быть больше нуля и меньше или равно общему числу каналов растра во входных каналах растра. По умолчанию используется общее число каналов растра на входных данных. | Long | 
| out_data_file (Дополнительный) | Выходной ASCII-файл данных, в котором хранятся параметры главных компонент. Выходной файл выходных данных записывает матрицы корреляции и ковариации, наряду с собственными числами и векторами, а также процентной дисперсией, собираемой каждым характеристическим числом, и описанной суммарной дисперсией. Выходной файл может иметь расширение .txt или .asc. | File | 
Возвращаемое значение
| Название | Объяснение | Тип данных | 
| out_multiband_raster | Выходной многоканальный набор растровых данных. Если значения во всех входных каналах целочисленные, выходной растр также будет целочисленным. Если в каком-либо из входных каналов содержатся данные с плавающей точкой, выходные данные также будут иметь этот тип. Если выходными данными является растр сетки ESRI, имя файла должно состоять не более, чем из 10 символов. | Raster | 
Пример кода
Метод главных компонент. Пример 1 (окно Python)
В этом примере выполняется Principal Component Analysis (PCA) на входном многоканальном растре и создаются выходные данные многоканального растра.
import arcpy
from arcpy import env
from arcpy.sa import *
env.workspace = "C:/sapyexamples/data"
outPrincipalComp = PrincipalComponents(["redlands"], 4,"pcdata.txt")
outPrincipalComp.save("C:/sapyexamples/output/outpc01")
Метод главных компонент. Пример 2 (автономный скрипт)
В этом примере выполняется Principal Component Analysis (PCA) на входном многоканальном растре и создаются выходные данные многоканального растра.
# Name: PrincipalComponents_Ex_02.py
# Description: Performs principal components analysis on a set of raster bands.
# Requirements: Spatial Analyst Extension
# Import system modules
import arcpy
from arcpy import env
from arcpy.sa import *
# Set environment settings
env.workspace = "C:/sapyexamples/data"
# Set local variables
inRasterBand1 = "redlands/redlandsc1"
inRasterBand2 = "redlands/redlandsc3"
numberComponents = 2
outDataFile = "C:/sapyexamples/output/pcdatafile.txt"
# Check out the ArcGIS Spatial Analyst extension license
arcpy.checkOutExtension("Spatial")
# Execute PrincipalComponents
outPrincipalComp = PrincipalComponents([inRasterBand1, inRasterBand2], 2,
                                       outDataFile)
# Save the output 
outPrincipalComp.save("C:/sapyexamples/output/outpc01")
Параметры среды
Информация о лицензиях
- ArcGIS Desktop Basic: Требует Spatial Analyst
- ArcGIS Desktop Standard: Требует Spatial Analyst
- ArcGIS Desktop Advanced: Требует Spatial Analyst