Сводка
Создает слой анализа задачи выбора маршрута транспорта (VRP), задает свойства анализа и рассчитывает его, что является идеальным вариантом для настройки веб-сервиса VRP. Слой анализа VRP ищет лучшие маршруты для парка транспортных средств.
Подробнее о выходных данных инструмента Расчет задачи выбора маршрута транспорта
Использование
В диалоговом окне инструмента есть разнообразные дополнительные параметры, сгруппированные для удобства работы в следующие шесть категорий:
- Расширенный анализ
- Барьеры
- Пользовательский режим передвижения
- Сетевые положения
- Выходные данные
- Возможности сервиса
Синтаксис
arcpy.na.SolveVehicleRoutingProblem(orders, depots, routes, breaks, time_units, distance_units, network_dataset, output_workspace_location, output_unassigned_stops_name, output_stops_name, output_routes_name, output_directions_name, {default_date}, {uturn_policy}, {time_window_factor}, {spatially_cluster_routes}, {route_zones}, {route_renewals}, {order_pairs}, {excess_transit_factor}, {point_barriers}, {line_barriers}, {polygon_barriers}, {time_attribute}, {distance_attribute}, {use_hierarchy_in_analysis}, {restrictions}, {attribute_parameter_values}, {maximum_snap_tolerance}, {exclude_restricted_portions_of_the_network}, {feature_locator_where_clause}, {populate_route_lines}, {route_line_simplification_tolerance}, {populate_directions}, {directions_language}, {directions_style_name}, {save_output_layer}, {service_capabilities}, {ignore_invalid_order_locations}, {travel_mode}, {ignore_network_location_fields}, {time_zone_usage_for_time_fields}, {overrides}, {save_route_data})
Параметр | Объяснение | Тип данных |
orders | Заказы, которые должны посетить маршруты анализа VRP. Заказ может быть доставкой (например, доставкой мебели), посадкой пассажиров (например, пассажиров в автобус-экспресс до аэропорта) или другим типом обслуживания или осмотра (например, подрезкой деревьев или осмотром строения). Набор объектов заказа имеет связанную таблицу атрибутов. Ниже приведены поля в таблице атрибутов с описанием. ObjectID: Управляемое системой поле ID. Shape: Поле геометрии, указывающее географическое положение объекта сетевого анализа. Name: Имя заказа. Имя должно быть уникальным. Если оставить имя равным null, имя будет автоматически сгенерировано во время решения. ServiceTime: Данное свойство определяет время, которое будет проведено в сетевом положении при посещении его на маршруте; это означает, что оно хранит в себе значение импеданса для сетевого положения. Нулевое значение или значение null указывают, что сетевое положение не требует времени обслуживания. Единицы измерения для значения данного поля задается параметром Единицы поля времени (time_units в Python). TimeWindowStart1: Время начала и конца первого временного окна для сетевого положения. Это поле может содержать значение null; значение null указывает на отсутствие времени начала. TimeWindowEnd1: Время окончания для первого временного окна для сетевого положения. Это поле может содержать значение null; значение null указывает на отсутствие времени окончания. TimeWindowStart2: Время начала и конца второго временного окна для сетевого положения. Это поле может содержать значение null; значение null указывает на отсутствие второго временного окна. Если первое временное окно содержит null, как указано в полях TimeWindowStart1 и TimeWindowEnd1, то второе временное окно также должно иметь значения null. Если оба временных окна не пустые, то они не могут перекрываться. Кроме того, второе временное окно должно появиться после первого. TimeWindowEnd2: Время окончания второго временного окна для сетевого положения. Это поле может содержать значение null. Когда оба TimeWindowStart2 и TimeWindowEnd2 имеют значение null, то второе временное окно отсутствует. Когда TimeWindowStart2 не null, а TimeWindowEnd2 – null, то имеется второе временное окно со временем начала, но без времени окончания. Это действительно так. MaxViolationTime1: Временное окно считается нарушенным, если прибытие происходит после окончания временного окна. В данном поле указывается максимальное допустимое время превышения для первого временного окна заказа. Оно может содержать нулевое значение, но не может содержать отрицательные значения. Нулевое значение показывает, что нарушение временного окна в первом временном окне заказа недопустимо; то есть первое временное окно является жестким. С другой стороны, значение NULL показывает, что для допустимого превышения времени предел отсутствует. Ненулевое значение показывает максимальную величину опоздания; например, маршрут может прибыть на точку заказа в течение 30 минут после окончания первого временного окна. Единицы измерения для значения данного поля задается параметром Единицы поля времени (time_units в Python). Превышение временного окна может отслеживаться и взвешиваться механизмом расчета. По этой причине вы можете указать механизму расчета VRP следующие подходы:
Назначая уровень важности параметру Значимость превышения временного окна (time_window_factor в Python), вы фактически выбираете один из этих трех подходов. В любом случае, механизм расчета приведет к ошибке, если будет превышено значение, заданное для свойства MaxViolationTime1. MaxViolationTime2: Максимальное допустимое время нарушения для второго временного окна заказа. Данное поле аналогично полю MaxViolationTime1. InboundArriveTime: Определяет, когда доставляемый товар будет готов на станции. Заказу может быть приписан маршрут, только если входное время прибытия предшествует значению последнего времени старта маршрута. То есть маршрут не может стартовать со станции, пока товар не будет загружен. Это поле поможет смоделировать возможные наплывы заказов доставок. Например, работа над заказом требует специальных материалов, которые отсутствуют на станции. Материалы отправляются из другого места и прибудут на склад в 11:00. Чтобы убедиться, что ни один маршрут, который начинается до их доставки, не приписан к заказу, входное время заказа устанавливается на 11:00. Специальные материалы будут доставлены в 11:00, загружены в автомобиль, который затем отправится со станции выполнять приписанные ему заказы. OutboundDepartTime: Определяет, когда требуемый для заказа товар должен прибыть на конечную станцию. Заказ должен быть присвоен маршруту, только если маршрут может посетить место заказа и достичь его конечной станции до указанного исходящего времени отъезда. Это поле поможет смоделировать возможные наплывы заказов доставок. Например, судоходная компания посылает грузовики забрать пакеты с заказами, привезти их на станцию, откуда они будут перенаправлены на другие объекты и отправлены по маршруту к месту назначения. Ежедневно в 15:00 полуприцеп останавливается на станции, чтобы забрать приоритетные пакеты и отвезти их непосредственно на центральную станцию обработки. Чтобы избежать задержки приоритетных пакетов до 15:00 вечера следующего дня, судоходная компания старается, чтобы грузовики забирали приоритетные пакеты из заказов и отвозили их на станцию до 15:00. Этого можно достичь путем установки 15:00 в качестве исходящего времени отъезда. DeliveryQuantities: Размер доставки. Вы можете указать размер в любом формате, например, масса, объем или количество. Вы можете даже указать несколько различных измерений, например, вес и объем. Введите число объектов поставки без указания единиц. Например, если по заказу необходимо выполнить доставку объекта массой 300 фунтов, то введите 300. Вам необходимо запомнить, что данное значение приведено в фунтах. Если при составлении маршрута учитываются несколько измерений, разделяйте их числовые значения пробелами. Например, если вы записываете массу и объем поставки в 2 000 фунтов и 100 кубических футов, введите 2000 100. В этом случае вам необходимо запомнить, что данные значения приведены в фунтах и кубических футах. Вам также необходимо запомнить последовательность введения значений и соответствующие им единицы измерения. Убедитесь, что аналогичным образом указаны Capacities для Маршрутов, DeliveryQuantities и PickupQuantities для Заказов; это означает, что данные значения должны быть указаны в тех же единицах и, если вы используете несколько размеров, то данные размеры должны быть приведены в той же последовательности для всех параметров. Таким образом, если вы указали массу в фунтах, а затем объем в кубических футах для DeliveryQuantities, то емкости ваших маршрутов и количества собираемых заказов необходимо указать аналогичным образом: массу в фунтах, а затем объем в кубических футах. Если вы смешиваете единицы измерения или изменяете последовательность, вы получите нежелательные результаты без каких-либо предупреждающих сообщений. Пустая строка или значение NULL соответствует нулю для всех размеров. Если строка содержит недостаточное число значений относительно числа отслеживаемых характеристик емкости или размеров, то оставшиеся значения интерпретируются, как равные нулю. Количество элементов поставки не может быть отрицательными. PickupQuantities: Размер загрузки. Вы можете указать размер в любом формате, например, масса, объем или количество. Вы можете даже указать несколько различных измерений, например, вес и объем. При этом вы не можете использовать отрицательные значения. Данное поле аналогично полю DeliveryQuantities для Заказов. Revenue: Доход, создаваемый в случае включения заказа в решение. Это поле может содержать значение null (значение null означает нулевой доход), но не может иметь отрицательного значения. Прибыль включается в оптимизацию значения целевой функции, но не является частью оперативных расходов на решение. То есть поле TotalCost в классе маршрута никогда не включает доход в итоговое значение; однако, доход имеет определенный вес и важность для обслуживания заказов. SpecialtyNames: Строка, разделенная пробелами и содержащая имена специальных требований, необходимых для заказа. Значение null указывает, что заказ не содержит специальных требований. Записи всех специальных требований, указанных в классах Заказы и Маршруты, должны полностью совпадать для того, чтобы механизм расчета VRP мог их связать. Для иллюстрации того, что такое специальные требования, и как они работают, предположим, что у компании по уходу за газонами и подрезанию деревьев имеется часть заказов, которые требуют применения автоподъемника с люлькой для обрезки высоких деревьев. Компания введет BucketTruck в поле SpecialtyNames для данных заказов, чтобы указать на наличие специального требования. SpecialtyNames будет оставлено пустым для других заказов. Аналогичным образом, компания введет BucketTruck в поле SpecialtyNames маршрутов, выполняемых грузовиками с гидравлическими стрелами-манипуляторами. Для остальных маршрутов данное поле останется пустым (NULL). Во время решения механизм расчета VRP назначает заказы без особых требований для любого маршрута, но назначает заказы, для которых требуются автовозы, только маршрутам, в которых они есть. AssignmentRule: В данном поле указывается правило назначения заказа для маршрута. Оно ограничивается с помощью значений, указанных ниже (их кодированные значения указаны в скобках).
Это поле не может содержать значения null. CurbApproach: Свойство CurbApproach указывает направление, откуда транспортное средство может прибыть и куда отправиться из сетевого местоположения. Можно выбрать четыре варианта (их кодированные значения показаны в скобках):
RouteName: Имя маршрута, для которого назначен заказ. Являясь входным, данное поле используется для предварительного назначения заказа определенному маршруту. Оно может содержать значение NULL, показывающие, что заказ предварительно не назначен ни одному маршруту, и механизм расчета определяет наилучшее из возможных назначений маршрутов для заказа. Если оно установлено на null, то поле sequence также должно быть null. После вычисления, если заказ присвоен маршруту, то поле RouteName будет содержать имя маршрута, которому был назначен заказ. Sequence: Это обозначает последовательность заказа на маршруте. Являясь входным, данное поле используется для указания относительной последовательности для заказа на маршруте. Данное поле может содержать значение NULL, показывающие, что заказ может быть размещен в любой точке маршрута. Значение null может иметь место только вместе со значением RouteName null. Значения входной последовательности являются не отрицательными и уникальными для каждого маршрута (распределенного среди посещений станций, заказов и перерывов), но не обязаны начинаться с 0 или быть последовательными. После расчета в поле Sequence будут содержаться значения последовательности заказа для назначенного маршрута. Выходные значения последовательности для маршрута едины для посещений станций, заказов и перерывов; начинаются с 1 (на начальной станции); и являются последовательными. Таким образом, минимальным возможным выходным значением последовательности для заказа на маршруте является 2, это обусловлено тем, что маршрут всегда начинается со станции. | Feature Set |
depots | Станция – это место, откуда отправляется транспортное средство в начале рабочего дня и куда оно возвращается по окончании рабочего дня. Транспортные средства загружаются (при доставке) или разгружаются (при сборе) на станциях в начале маршрута. В некоторых случаях станция может также служить местом пополнения загрузки, в котором транспортное средство может разгружаться или догружаться и продолжать выполнять доставку и сбор. У станции есть значения времени открытия и закрытия, указываемые жестким временным окном. Транспортные средства не могут прибывать на станцию за пределами этого временного окна. Набор объектов станций имеет связанную таблицу атрибутов. Ниже приведены поля в таблице атрибутов с описанием. ObjectID: Управляемое системой поле ID. Shape: Поле геометрии, указывающее географическое положение объекта сетевого анализа. Name: Имя станции. Поля StartDepotName и EndDepotName набора записей маршрутов ссылаются на указанные здесь имена. На них также ссылаются наборы записей обновления маршрутов при их использовании. Имена станций нечувствительны к регистру, но должны быть не пустыми и уникальными. TimeWindowStart1: Время начала и конца первого временного окна для сетевого положения. Это поле может содержать значение null; значение null указывает на отсутствие времени начала. TimeWindowEnd1: Время окончания для первого временного окна для сетевого положения. Это поле может содержать значение null; значение null указывает на отсутствие времени окончания. TimeWindowStart2: Время начала и конца второго временного окна для сетевого положения. Это поле может содержать значение null; значение null указывает на отсутствие второго временного окна. Если первое временное окно содержит null, как указано в полях TimeWindowStart1 и TimeWindowEnd1, то второе временное окно также должно иметь значения null. Если оба временных окна не пустые, то они не могут перекрываться. Кроме того, второе временное окно должно появиться после первого. TimeWindowEnd2: Время окончания второго временного окна для сетевого положения. Это поле может содержать значение null. Когда оба TimeWindowStart2 и TimeWindowEnd2 имеют значение null, то второе временное окно отсутствует. Когда TimeWindowStart2 не null, а TimeWindowEnd2 – null, то имеется второе временное окно со временем начала, но без времени окончания. Это действительно так. CurbApproach: Свойство CurbApproach указывает направление, откуда транспортное средство может прибыть и куда отправиться из сетевого местоположения. Можно выбрать четыре варианта (их кодированные значения показаны в скобках):
Bearing: Направление, в котором движется точка. Единицами измерения являются градусы, которые отсчитываются по часовой стрелке от истинного севера. Это поле используется совместно с полем BearingTol. Данные направления обычно отправляются автоматически с мобильного устройства, оснащенного GPS-приемником. Попробуйте включить данные о направлении, если вы загружаете движущийся заказ, например, пешехода или транспортное средство. Использование данного поля обеспечивает защиту от добавления положений на неверные ребра, что может произойти, например, когда транспортное средство расположено недалеко от перекрестка или эстакады. Bearing также помогает Network Analyst определить, на какой стороне улицы находится точка. Дополнительные сведения см. в разделе Bearing и BearingTol. BearingTol: Значение допуска направления создает диапазон допустимых значений направления во время определения положения движущихся точек на ребре с использованием поля Bearing. Если значение из поля Bearing в пределах допустимых значений, созданных на основании допуска направления на ребре, точка может быть добавлена как сетевое положение; в противном случае происходит анализ ближайшей точки следующего ближайшего ребра. Единицы измерения указаны в градусах, значение по умолчанию - 30. Значения должны быть больше нуля и меньше 180. Значение 30 означает, что, когда Network Analyst предпринимает попытку добавить сетевое положение на ребро, диапазон допустимых значений направления создается в пределах 15º с каждой стороны ребра (слева и справа), в обоих направлениях оцифровки ребра. Дополнительные сведения см. в разделе Bearing и BearingTol. NavLatency: Это поле может использоваться в процессе решения, только если в полях Bearing и BearingTol также есть значения; а ввод значения в поле NavLatency не является обязательным, даже когда в полях Bearing и BearingTol присутствуют значения. NavLatency указывает, сколько времени, как ожидается, пройдет с момента отправки информации GPS с движущегося транспортного средства на сервер и до момента получения обработанного маршрута навигационным устройством транспортного средства. Эти единицы времени NavLatency аналогичны единицам атрибута стоимости, которые задаются параметром Атрибут времени. | Feature Set |
routes | Маршруты, доступные для заданной задачи нахождения маршрута транспорта. Маршрут задает характеристики транспортного средства и водителя; после решения он также включает маршрут между станциями и заказами. Маршрут может учитывать время начала и окончания обслуживания на станции, фиксированное или гибкое время начала, оперативные расходы на основании времени и на основании расстояния, различные ограничения по рабочему дню водителя и т. д. Набор записей маршрута имеет несколько атрибутов. Ниже приведены поля в таблице атрибутов с описанием. Name: Название маршрута. Имя должно быть уникальным. Network Analyst создает уникальное имя во время расчета, если для него было указано значение null. Таким образом, ввод значения в большинстве случаев является необязательным. Однако вам необходимо ввести имя, если анализ содержит перерывы, обновления маршрута, зоны маршрутов или заказы, которые были предварительно назначены для маршрута, так как имя маршрута в данном случае используется как внешний ключ. Обратите внимание, что имена маршрутов не чувствительны к регистру. StartDepotName: Имя начальной станции маршрута. Это поле является внешним ключом для поля Name в Depots. Если значение StartDepotName - null, то маршрут начинается с первого назначенного заказа. Исключение начальной станции полезно в том случае, если начальное положение транспортного средства неизвестно или неважно для вашей задачи. Однако, когда StartDepotName имеет значение null, EndDepotName не может быть null. Виртуальные начальные станции не допускаются, если заказы или станции находятся в нескольких часовых поясах. Если маршрут выполняет доставку и StartDepotName имеет значение null, то предполагается, что груз загружен в транспортное средство на виртуальной станции перед началом маршрута. Для маршрута без обновления заказы маршрутов (с ненулевыми значениями DeliveryQuantities в класс Заказы) загружаются на начальной станции или виртуальной станции. Для маршрута с обновлениями, на начальной или виртуальной станции выполняется загрузка только тех заказов маршрутов, которые выполняются до первого обновления. EndDepotName: Имя конечной станции маршрута. Это поле является внешним ключом для поля Name в параметре Станции. StartDepotServiceTime: Время обслуживания на начальной станции. Может использоваться для моделирования времени, затраченного на загрузку транспортного средства. Это поле может содержать пустое значение; пустое значение соответствует нулевому времени обслуживания. Единицы измерения для значения данного поля задается параметром Единицы поля времени (time_units в Python). EndDepotServiceTime: Время обслуживания на конечной станции. Может использоваться для моделирования времени, затраченного на разгрузку транспортного средства. Это поле может содержать пустое значение; пустое значение соответствует нулевому времени обслуживания. Единицы измерения для значения данного поля задается параметром Единицы поля времени (time_units в Python). EarliestStartTime: Наиболее раннее допустимое время начала маршрута. Оно используется механизмом решения вместе с временным окном начальной станции для определения возможного времени начала маршрута. Это поле не может содержать значения NULL и имеет по умолчанию значение только времени, которое равно 8:00 часов утра; это значение по умолчанию означает 8:00 утра даты, заданной параметром Дата по умолчанию (default_date в Python). Дата по умолчанию игнорируется, когда поле временного окна содержит дату и время. Для предотвращения этой ошибки форматируйте все временные окна для Станций, Маршрутов, Заказов и Перерывов чтобы они также включали дату и время. При использовании наборов сетевых данных с данными трафика, охватывающими несколько часовых поясов, часовой пояс для EarliestStartTime такой же, как и часовой пояс для ребра или соединения, на котором расположена начальная станция. LatestStartTime: Наиболее позднее допустимое время начала маршрута. Это поле не может содержать нулевые значения и имеет по умолчанию значение только для времени, которое равно 10:00 часов утра; это значение по умолчанию означает 10:00 утра даты, заданной параметром Дата по умолчанию в слое анализа. При использовании наборов сетевых данных с данными трафика, охватывающими несколько часовых поясов, часовой пояс для LatestStartTime такой же, как и часовой пояс для ребра или соединения, на котором расположена начальная станция. ArriveDepartDelay В этом поле хранится величина времени в пути, необходимая для ускорения транспортного средства до обычной скорости передвижения, замедления его до остановки и перемещения из сети и в сеть (например, на парковку и с парковки). Включение значения ArriveDepartDelay позволяет механизму расчета VRP не отправлять множество маршрутов для обслуживания физически совпадающих заказов. Стоимость для этого свойства выводится между визитами по несовпадающим заказам, станциям и обновлениям маршрута. Например, если маршрут начинается со станции и посещает первый заказ, ко времени пути добавляется общая задержка прибытия/отправления. То же касается пути от первого заказа ко второму. Если второй и третий заказы совпадают, значение ArriveDepartDelay между ними не добавляется, поскольку транспортному средству не нужно перемещаться. Если маршрут следует к пункту обновления загрузки, значение снова добавляется ко времени в пути. Хотя транспортному средству необходимо замедляться и останавливаться на перерыв, а после него ускоряться, механизм расчета задачи выбора маршрута транспорта не может добавлять значение ArriveDepartDelay для перерывов. Это означает, что если маршрут оставляет заказ, останавливается на перерыв и переходит к следующему заказу, задержка прибытия/отправления добавляется только один раз, а не дважды. Для иллюстрации данного утверждения предположим, что имеются пять совпадающих заказов в одном многоэтажном доме, которые обслуживаются тремя разными маршрутами. Это значит, что нужно добавить три задержки прибытия/отправления; то есть трем водителям необходимо раздельно найти места для парковки и войти в одно и то же здание. Однако если заказы могут быть обслужены всего одним маршрутом, парковаться и входить в здание необходимо только одному водителю – и возникает только одна задержка прибытия/отправления. Поскольку механизм расчета задачи выбора маршрута транспорта пытается минимизировать затраты, он попробует ограничить задержки прибытия/отправления и поэтому выберет вариант с одним маршрутом. (Обратите внимание, что при наличии других ограничений – специальных требований, временных окон или емкостей – могут понадобиться несколько маршрутов.) Единицы измерения для значения данного поля задается параметром Единицы поля времени (time_units в Python). Capacities: Максимальная вместимость транспортного средства. Вы можете указать вместимость в любой размерности, такой как вес, объем или количество. Вы можете даже указать несколько различных измерений, например, вес и объем. Введите вместимости без указания единиц. Например, для транспортного средства, способного перевезти не более 40 000 фунтов, необходимо ввести 40000. Вам надо запомнить, что данное значение приведено в фунтах. Если при составлении маршрута учитываются несколько измерений, разделяйте их числовые значения пробелами. Например, для записи максимального веса и максимального объема транспортного средства, равных 40 000 фунтов и 2 000 кубических футов, в качестве параметра Capacities следует задать значение 40000 2000. Вам будет необходимо запомнить единицы измерения. Вам также нужно помнить последовательность введенных значений и соответствующие им единицы измерения (в данном случае фунты, а затем кубические футы). Запомнить единицы измерения и их последовательность важно по нескольким причинам: во-первых, для возможности интерпретации информации в будущем, во-вторых для правильного ввода значений полей DeliveryQuantities и PickupQuantities для Заказов. Относительно второго пункта помните, что механизм расчета VRP одновременно ссылается на Capacities, DeliveryQuantities и PickupQuantities для того, чтобы маршрут не стал перегруженным. Так как единицы измерения не могут быть введены в поле, Network Analyst не может выполнить преобразование единиц, поэтому вам необходимо вводить значения для трех полей с использованием аналогичных единиц измерения и в той же последовательности, чтобы обеспечить правильность интерпретации значений. При комбинировании единиц измерения или изменении последовательности этих трех полей вы получите нежелательные результаты без уведомления об этом. Таким образом, необходимо задать стандарт ввода единиц измерения и определенную последовательность и постоянно использовать ее при вводе значений для этих трех полей. Пустая строка или значение NULL соответствует нулю для всех значений. Значение емкости не может быть отрицательным. Если в строке Capacities содержится недостаточное число значений относительно полей DeliveryQuantities или PickupQuantities в заказах, оставшиеся значения интерпретируются как равные нулю. FixedCost: Фиксированное денежная стоимость, которая принимается только в том случае, если маршрут используется в решении (то есть, что для него назначены некоторые заказы). Это поле может содержать значения NULL; значение NULL соответствует нулевой фиксированной стоимости. Эта стоимость является частью общей стоимости эксплуатации маршрута. CostPerUnitTime: Примененная денежная стоимость – на единицу времени работы – для общей продолжительности маршрута, включая значения времени в пути, а также времени обслуживания и ожидания на заказах, станциях и в перерывах. Это поле не может содержать значения null и имеет значение по умолчанию, равное 1.0. Единицы измерения для значения данного поля задается параметром Единицы поля времени (time_units в Python). CostPerUnitDistance: Примененная денежная стоимость – на единицу пройденного расстояния – для длины маршрута (общее пройденное расстояние). Это поле может содержать значения null; значение null указывает на нулевую стоимость. Единица измерения для данного значения поля указывается параметром Единицы поля расстояния (distance_units для Python). OvertimeStartTime: Продолжительность регулярного времени работы перед началом вычисления сверхурочных. Это поле может содержать значения null; значение null указывает, что сверхурочная работа не применяется. Единицы измерения для значения данного поля задается параметром Единицы поля времени (time_units в Python). Например, сверхурочные должны выплачиваться водителю, когда общая продолжительность поездки превышает 8 часов; в этом случае параметр OvertimeStartTime задается как 480 (8 часов * 60 минут/час), и при этом Единицы поля времени задаются в Минутах. CostPerUnitOvertime: Денежная стоимость для единицы времени сверхурочной работы. Это может содержать только значение null, если OvertimeStartTime также равно null. В противном случае это должно быть положительное значение больше, чем CostPerUnitTime. MaxOrderCount: Максимальное допустимое число заказов на маршруте. Это поле не может содержать значения NULL и имеет значение по умолчанию, равное 30. MaxTotalTime: Максимально допустимая продолжительность маршрута. Продолжительность (длительность) маршрута включает в себя значения времени в пути, а также времени обслуживания и ожидания на заказах, на станциях и в перерывах. Это поле может содержать значения null; значение null указывает на отсутствие ограничений на продолжительность маршрута. Единицы измерения для значения данного поля задается параметром Единицы поля времени (time_units в Python). MaxTotalTravelTime: Максимально допустимое время в пути для маршрута. Время в пути включает только время, проведенное за рулем, и не включает время обслуживания или ожидания. Это поле может содержать значения NULL; значение NULL соответствует отсутствию ограничений по максимально допустимому времени передвижения по маршруту. Значение данного поля не может быть больше значения поля MaxTotalTime. Единицы измерения для значения данного поля задается параметром Единицы поля времени (time_units в Python). MaxTotalDistance: Максимально допустимое расстояние для маршрута. Единица измерения для данного значения поля указывается параметром Единицы поля расстояния (distance_units для Python). Это поле может содержать значения null; значение null соответствует отсутствию ограничений по максимально допустимому расстоянию маршрута. SpecialtyNames: Строка, разделенная пробелами и содержащая имена специальных требований, поддерживаемых маршрутом. При отсутствии значений маршрут не поддерживает никаких специальных требований. Это поле является внешним ключом для поля SpecialtyNames параметра Заказы. Для иллюстрации того, что такое специальные требования, и как они работают, предположим, что у компании по уходу за газонами и подрезанию деревьев имеется часть заказов, которые требуют применения автоподъемника с люлькой для обрезки высоких деревьев. Компания введет BucketTruck в поле SpecialtyNames для данных заказов, чтобы указать на наличие специального требования. SpecialtyNames будет оставлено пустым для других заказов. Аналогичным образом, компания введет BucketTruck в поле SpecialtyNames маршрутов, выполняемых грузовиками с гидравлическими стрелами-манипуляторами. Для остальных маршрутов данное поле останется пустым (NULL). Во время решения механизм расчета VRP назначает заказы без особых требований для любого маршрута, но назначает заказы, для которых требуются автовозы, только маршрутам, в которых они есть. AssignmentRule: Определяет, может ли маршрут быть использован для решения задачи. Это поле ограничено доменом значений, и возможны следующие значения:
| Record Set |
breaks | Периоды отдыха или перерывы для маршрутов в заданной задаче нахождения маршрута транспорта. Перерыв связан ровно с одним маршрутом и может быть взят после выполнения заказа, на пути к заказу или перед обслуживанием заказа. У него есть время начала и длительность, которые могут оплачиваться или не оплачиваться водителю. Имеется три способа установки начала перерыва: при помощи временного окна, максимального времени в пути или максимального времени работы. Набор записей перерыва имеет связанные атрибуты. Ниже приведены поля в таблице атрибутов с описанием. ObjectID: Управляемое системой поле ID. RouteName: Название маршрута, для которого применяется перерыв. Хотя перерыв назначается ровно одному маршруту, одному и тому же маршруту может быть назначено множество перерывов. Это поле является внешним ключом для поля Name в классе Маршруты, и его значение не может иметь значение null. Precedence: Значения приоритета определяют последовательность перерывов для заданного маршрута. Перерывы со значением приоритета 1 происходят перед перерывами со значением 2 и так далее. Все перерывы должны иметь значение приоритета, независимо от того, являются ли они перерывами во временном окне, с максимальным временем в пути или с максимальным рабочим временем. ServiceTime Продолжительность перерыва. Это поле не может содержать значения NULL и имеет значение по умолчанию, равное 60. Единицы измерения для значения данного поля задается параметром Единицы поля времени (time_units в Python). TimeWindowStart: Время начала временного окна перерыва. Полуоткрытые временные окна некорректны для перерывов. Если данное поле содержит значение, то MaxTravelTimeBetweenBreaks и MaxCumulWorkTime должны быть пустыми (null); более того, все остальные перерывы в слое анализа должны иметь значения null для параметров MaxTravelTimeBetweenBreaks и MaxCumulWorkTime. Ошибка возникнет во время решения, если на маршруте есть несколько перерывов с перекрывающимися временными окнами. Поля временных окон могут содержать только значение времени или даты и времени, они не могут быть целыми числами, представляющими миллисекунды с начала Эпохи. Часовой пояс для полей временного окна задается с помощью параметра time_zone_usage_for_time_fields. Если поле времени, например, TimeWindowStart, имеет значение только времени (например, 12:00 пополудни), то используется дата, которая была задана параметром Дата по умолчанию (default_date в Python). С помощью значений даты и времени (например, 7/11/2012 12:00 p.m.) можно задавать временные окна, которые могут охватывать два и более дней. Это удобно, если перерыв следует сделать в районе полуночи. Дата по умолчанию игнорируется, когда поле временного окна содержит дату и время. Для предотвращения этой ошибки форматируйте все временные окна для Станций, Маршрутов, Заказов и Перерывов чтобы они также включали дату и время. TimeWindowEnd: Время окончания временного окна перерыва. Полуоткрытые временные окна некорректны для перерывов. Если данное поле содержит значение, то MaxTravelTimeBetweenBreaks и MaxCumulWorkTime должны быть пустыми (null); более того, все остальные перерывы в слое анализа должны иметь значения null для параметров MaxTravelTimeBetweenBreaks и MaxCumulWorkTime. MaxViolationTime: В данном поле указывается максимальное допустимое время нарушения для временного окна перерыва. Временное окно считается нарушенным, если время прибытия выходит за пределы временного диапазона. Нулевое значение указывает, что временное окно не может быть нарушено; то есть, это окно является жестким. Ненулевое значение указывает максимальную величину опоздания: например, перерыв может начаться через 30 минут после окончания выделенного ему временного окна, но штраф за опоздание рассчитывается в соответствии с параметром Значимость превышения временного окна (time_window_factor в Python). Это свойство может быть пустым (null); значение null в значениях TimeWindowStart и TimeWindowEnd соответствует отсутствию ограничений по допустимому времени нарушения. Если MaxTravelTimeBetweenBreaks или MaxCumulWorkTime имеют значение, MaxViolationTime должно быть null. Единицы измерения для значения данного поля задается параметром Единицы поля времени (time_units в Python). MaxTravelTimeBetweenBreaks: Максимальное время в пути, которое может быть суммировано до начала перерыва. Время в пути суммируется от окончания предыдущего перерыва или, если перерыв еще не произошел, от начала маршрута. Если это последний перерыв маршрута, то MaxTravelTimeBetweenBreaks также указывает на максимальное время в пути, которое может быть суммировано от последнего перерыва до конечной станции. Это поле предназначено для ограничения длительности вождения транспортного средства человеком, прежде чем потребуется перерыв. Например, если для параметра Единицы поля времени (time_units для Python) в настройках анализа установлено значение Минуты и у MaxTravelTimeBetweenBreaks указано значение 120, то у водителя будет перерыв через два часа вождения. Чтобы назначить второй перерыв еще через два часа вождения, значение поля второго перерыва MaxTravelTimeBetweenBreaks должно быть 120. Если данное поле содержит значение, то TimeWindowStart, TimeWindowEnd, MaxViolationTime и MaxCumulWorkTime должны быть null для успешного выполнения анализа. Единицы измерения для значения данного поля задается параметром Единицы поля времени (time_units в Python). MaxCumulWorkTime: Максимальное время работы, которое может быть суммировано до начала перерыва. Время работы всегда накапливается с начала маршрута. Оно включает в себя сумму времени перемещения, а также времени обслуживания и ожидания на заказах, на станциях и в перерывах. Обратите внимание, что здесь исключено время ожидания, которое равно времени, затрачиваемому маршрутом (или водителем) на ожидание в точке заказа или на станции до начала временного окна. Это поле предназначено для ограничения продолжительности работы человека, прежде чем потребуется перерыв. Например, если для параметра Единицы поля времени (time_units в Python) выбрано значение Минуты, для параметра MaxCumulWorkTime выбрано значение 120, а для ServiceTime выбрано значение 15, то у водителя будет 15-минутный перерыв через два часа вождения. Продолжая рассматривать последний пример, предположим, что второй перерыв должен начаться через три часа работы. Для указания данного перерыва необходимо ввести значение 315 (пять часов и 15 минут) в значение MaxCumulWorkTime второго перерыва. Данное значение включает в себя MaxCumulWorkTime и ServiceTime предыдущего перерыва, а также три дополнительных часа работы до второго перерыва. Чтобы избежать преждевременных перерывов на максимальное рабочее время, помните, что они накапливают рабочее время с начала маршрута и что рабочее время включает время обслуживания на ранее посещенных станциях, заказы и перерывы. Если данное поле содержит значение, то TimeWindowStart, TimeWindowEnd, MaxViolationTime и MaxTravelTimeBetweenBreaks должны быть null для успешного выполнения анализа. Единицы измерения для значения данного поля задается параметром Единицы поля времени (time_units в Python). IsPaid: Булево значение, указывающее, будет ли перерыв оплачиваемым или нет. Значение Да (True) определяет, что время, затраченное на перерыв, включается в расчет затрат маршрута и определение сверхурочных. Значение Нет (False) определяет обратное. По умолчанию используется значение Да (True). Sequence: Являясь входным, данное поле показывает последовательность перерыва на его маршруте. Это поле может содержать значения NULL. Значения входной последовательности являются положительными и уникальными для каждого маршрута (распределенного среди посещений станций, заказов и перерывов), но не обязаны начинаться с 1 или быть последовательными. Механизм расчета изменяет поле последовательности. После решения данное поле содержит значение последовательности перерыва на его маршруте. Выходные значения последовательности для маршрута едины для посещений станций, заказов и перерывов; начинаются с 1 (на начальной станции); и являются последовательными. | Record Set |
time_units | Задает единицы измерения времени для значений времени в анализе.
Многие объекты и записи в анализе VRP содержат поля для записи значений времени, например ServiceTime для заказов и CostPerUnitTime для маршрутов. Для сокращения требований по вводу данных, эти поля не должны включать в себя единицы. Все значения расстояния должны вводиться в одних и тех же единицах, и данный параметр используется для указания единиц этих значений. Обратите внимание, что выходные поля на основании времени используют единицы, указанные данным параметром. Данная единица времени не обязана совпадать с единицей времени параметра сети Атрибут времени (time_attribute в Python). | String |
distance_units | Задает единицы измерения расстояния для всех полей на основании расстояния в анализе.
Многие объекты и записи в анализе VRP содержат поля для записи значений расстояния, например, MaxTotalDistance и CostPerUnitDistance для маршрутов. Для сокращения требований по вводу данных эти поля не должны включать в себя единицы. Все значения расстояния должны вводиться в одних и тех же единицах, и данный параметр используется для указания единиц этих значений. Обратите внимание, что выходные поля на основании расстояния используют единицы, определяемые данным параметром. Данная единица расстояния не обязательно должна совпадать с единицей расстояния параметра сети Атрибут расстояния (distance attribute в Python). | String |
network_dataset | Набор сетевых данных, для которого выполняется анализ маршрута транспорта. Набор сетевых данных должен содержать стоимостный атрибут на основе времени, поскольку механизм расчета задач выбора маршрута транспорта ориентирован на минимизацию времени. | Network Dataset Layer |
output_workspace_location | Файловая база геоданных или рабочая область in-memory, в которой создаются выходные классы пространственных объектов. Рабочая область должна существовать. Выходная рабочая область по умолчанию находится в памяти. | Workspace |
output_unassigned_stops_name | Имя выходного класса пространственных объектов, которое будет содержать станции, к которым не удалось получить доступ, и не назначенные заказы. | String |
output_stops_name | Имя класса пространственных объектов, которое будет содержать остановки, посещенные маршрутами. Данный класс пространственных объектов включает остановки на станциях, в местах заказа и в перерывах. | String |
output_routes_name | Имя класса пространственных объектов, которое будет содержать маршруты анализа. | String |
output_directions_name | Имя класса пространственных объектов, которое будет содержать путевые листы для маршрутов. | String |
default_date (Дополнительный) | Дата по умолчанию для значений полей времени, в которых указывается время в течение дня без указания даты. | Date |
uturn_policy (Дополнительный) | Правила разворота на соединениях. При разрешении U-образных разворотов неявно предполагается, что механизм расчета позволяет разворот на соединении и продолжение движения по той же улице в обратную сторону. Учитывая, что соединения представляют собой пересечения улиц и тупики, различные транспортные средства могут разворачиваться на некоторых соединениях, но не на всех – это зависит от того, является ли соединение перекрестком или тупиком. Для соответствия, параметр правил разворотов в неявном виде указывает количество ребер, участвующих в соединении, что представляет собой валентность соединения. Ниже приведены допустимые значения для данного параметра; каждое из них сопровождается описанием значения в терминах валентности соединения.
Для более точного определения правил разворота можно добавить глобальный параметр задержки на повороте в сетевой атрибут стоимости или настроить его, если он уже существует, а также уделить особое внимание конфигурации обратных поворотов. Кроме того, можно задать для сетевых положений свойство CurbApproach. Значение этого параметра перезаписывается, если для Режима передвижения (travel_mode в Python) установлено значение, отличное от Пользовательский. | String |
time_window_factor (Дополнительный) | Определяет важность соблюдения временных окон. Имеется три параметра, которые описаны ниже.
| String |
spatially_cluster_routes (Дополнительный) | Задает автоматическое создание механизмом расчета основных динамических точек.
| Boolean |
route_zones (Дополнительный) | Очерчивает рабочие территории для заданных маршрутов. Зона маршрута – это полигональный пространственный объект, который используется для ограничения маршрутов обслуживанием только тех заказов, которые находятся в пределах указанной области или вблизи нее. Вот несколько примеров, когда зоны маршрутов могут быть полезны:
Набор объектов зон маршрутов имеет связанную таблицу атрибутов. Ниже приведены поля в таблице атрибутов с описанием. ObjectID: Управляемое системой поле ID. Shape: Поле геометрии, указывающее географическое положение объекта сетевого анализа. RouteName: Название маршрута, для которого применяется данная зона. Зона маршрута может иметь не более одного связанного маршрута. Это поле не может содержать пустые значения, и оно является внешним ключом для поля Name в классе объектов Маршруты. IsHardZone: Двоичное значение, определяющее гибкую или жесткую зону маршрута. Значение Да (True) определяет жесткую зону; это означает, что заказ, выходящий за пределы полигона зоны маршрута, не может быть назначен этому маршруту. По умолчанию используется значение Истина (1). Значение Ложь (0) определяет, что такие заказы все еще могут быть назначены, но стоимость обслуживания заказа взвешена на основании функции евклидова расстояния от зоны маршрута. По сути, это означает, что по мере увеличения расстояния по прямой от гибкой зоны до заказа вероятность того, что заказ будет назначен маршруту, уменьшается. | Feature Set |
route_renewals (Дополнительный) | Определяет промежуточные станции, которые могут посещаться на маршруте для догрузки и выгрузки доставляемых или собираемых грузов. Обновление связывает маршрут со станцией. Связь указывает, что на маршруте может производиться обновление (догрузка или выгрузка на маршруте) на связанной станции. Обновления маршрутов могут использоваться для моделирования сценариев, в которых транспортное средство набирает полный объем доставляемых грузов на начальной станции, обслуживает заказы, возвращается на станцию для новой загрузки и продолжает обслуживать дальнейшие заказы. Например, при доставке газа пропана транспортное средство может осуществить несколько доставок до тех пор, пока его резервуар не будет почти или полностью опустошен, посетить пункт дозаправки и осуществлять дальнейшую доставку. Вот несколько правил и вариантов выбора, которые также следует учитывать при работе с исходными точками маршрутов:
Набор записей обновлений маршрута имеет связанные атрибуты. Ниже приведены поля в таблице атрибутов с описанием. ObjectID: Управляемое системой поле ID. DepotName: Имя станции, в которой происходит такое обновление. Это поле не может содержать значение null, и оно является внешним ключом для поля Name в классе объектов Станции. RouteName: Название маршрута, к которому применяется данное обновление. Это поле не может содержать значение null, и оно является внешним ключом для поля Name в классе объектов Маршруты. ServiceTime: Время обслуживания для обновления. Это поле может содержать пустое значение; пустое значение соответствует нулевому времени обслуживания. Единица измерения для значения данного поля задается свойством Единицы поля времени для слоя анализа. | Record Set |
order_pairs (Дополнительный) | Пары заказов сбора и доставки, которые обслуживаются на одном маршруте. Иногда необходимо, чтобы сбор и доставка заказов производились совместно. Например, курьерской компании может потребоваться маршрут для сбора посылки с высоким приоритетом от одного заказчика и доставки ее другому без возврата на станцию или сортировочную станцию с целью сокращения времени доставки. Эти связанные заказы могут назначаться одному и тому же маршруту с соответствующей последовательностью при помощи спаренных заказов. Более того, могут существовать ограничения продолжительности хранения посылки в транспортном средстве; например, посылка может содержать образец крови, который должен быть перевезен из офиса врача в лабораторию в течение двух часов. Набор записей пар заказов имеет связанные атрибуты. Ниже приведены поля в таблице атрибутов с описанием. ObjectID: Управляемое системой поле ID. FirstOrderName: Имя первого заказа в паре. Это поле является внешним ключом для поля Name в векторном слое Заказы. SecondOrderName: Имя второго заказа в паре. Это поле является внешним ключом для поля Name в векторном слое Заказы. Первый заказ в паре должен быть заказом сбора, это означает, что значение поля DeliveryQuantities для него null. Второй заказ в паре должен быть заказом доставки, это означает, что значение поля PickupQuantities для него null. Количество, которое собирается в первом заказе, должно соответствовать количеству, поставляемому во втором заказе. В отдельном случае оба заказа могут иметь нулевые количества для случаев, когда емкости не используются. MaxTransitTime: Максимальное время нахождения в пути для пары. Время нахождения в пути представляет собой продолжительность от времени отправления для первого заказа до времени прибытия на точку второго заказа. Это ограничение влияет на время в транспортном средстве, или время поездки, между двумя заказами. Если транспортное средство перевозит людей или скоропортящиеся товары, то его время поездки обычно короче, чем для транспортного средства, перевозящего коробки или непортящиеся товары. Это поле может содержать значения null; значение null соответствует отсутствию ограничений по времени поездки. Единица измерения для значения данного поля задается свойством Единицы поля времени для слоя анализа. Механизмом расчета может отслеживаться и учитываться лишнее время в пути (измеряемое с учетом непосредственного времени в пути между парами заказов). По этой причине можно задать для механизма решения задачи выбора маршрута транспорта один из трех подходов: минимизировать общее лишнее время в пути, независимо от увеличения стоимости пути для парка; найти решение, балансирующее общее время нарушений и стоимость пути; или игнорировать общее лишнее время в пути и вместо этого минимизировать стоимость пути для парка. Назначая уровень значимости для параметра Значимость избыточного времени нахождения в пути (excess_transit_factor в Python), вы фактически выбираете один из этих трех подходов. Независимо от уровня значимости, механизм расчета всегда будет возвращать ошибку при превышении значения свойства MaxTransitTime. | Record Set |
excess_transit_factor (Дополнительный) | Задает уровни важности сокращения избыточного времени в пути для пар заказов. Избыточное время в пути – это затрачиваемое сверх необходимого время для перемещения от одного заказа к другому. Избыточное время в пути может быть вызвано перерывами в работе водителя или движением к промежуточным заказам и станциям.
| String |
point_barriers (Дополнительный) | Определяет точечные барьеры, которые разделены на два типа: ограничения и дополнительной стоимости. Они временно ограничивают прохождение по сети или добавляют импеданс к точкам сети. Точечные барьеры задаются набором объектов, а значения атрибута, которые вы указываете для точечных объектов, определяют, являются ли они ограничениями или барьерами дополнительной стоимости. Ниже приведены поля в таблице атрибутов с описанием. ObjectID: Управляемое системой поле ID. Shape: Поле геометрии, показывающее географическое положение объекта сетевого анализа. Name: Имя барьера. BarrierType: Указывает, ограничивает ли барьер перемещение полностью или добавляет стоимость при прохождении через него. Существует две опции:
Additional_Time: Если для параметра BarrierType задана дополнительная стоимость, то значение поля Additional_Time показывает, сколько времени будет добавлено к маршруту при его прохождении через барьер. Единицы измерения для значения данного поля задается свойством Единицы поля времени для слоя анализа. Additional_Distance: Если для параметра BarrierType задана дополнительная стоимость, то значение поля Additional_Distance показывает, какой импеданс будет добавлен к маршруту при его прохождении через барьер. Единица измерения для значения данного поля указывается параметром Единицы поля расстояния. | Feature Set |
line_barriers (Дополнительный) | Определяет линейные барьеры, которые временно ограничивают прохождение через них. Линейные барьеры определяются набором объектов. Ниже приведены поля в таблице атрибутов с описанием. ObjectID: Управляемое системой поле ID. Shape: Поле геометрии, показывающее географическое положение объекта сетевого анализа. Name: Имя барьера. | Feature Set |
polygon_barriers (Дополнительный) | Определяет полигональные барьеры, которые разделены на два типа: ограничения и полигональные барьеры масштабированной стоимости. Они временно ограничивают перемещение или масштабируют импеданс в покрываемых ими частях сети. Полигональные барьеры задаются набором объектов, а значения атрибута, которые вы указываете для полигональных объектов, определяют, являются ли они ограничениями или барьерами дополнительной стоимости. Ниже приведены поля в таблице атрибутов с описанием. ObjectID: Управляемое системой поле ID. Shape: Поле геометрии, показывающее географическое положение объекта сетевого анализа. Name: Имя барьера. BarrierType: Указывает, ограничивает ли барьер перемещение полностью или масштабирует стоимость прохождения через него. Существует две опции:
Scaled_Time: Основанные на времени значения импеданса для ребер, расположенных под барьером, умножаются на значение, введенное в данное поле. Данное поле используется только в том случае, если барьер имеет тип масштабируемой стоимости. Scaled_Distance: Основанные на расстоянии значения импеданса для ребер, расположенных под барьером, умножаются на значение, введенное в данное поле. Данное поле используется только в том случае, если барьер имеет тип масштабируемой стоимости. | Feature Set |
time_attribute (Дополнительный) | Сетевой атрибут стоимости, используемый для определения времени прохождения по элементам сети. Значение этого параметра перезаписывается, если для Режима передвижения (travel_mode в Python) установлено значение, отличное от Пользовательский. | String |
distance_attribute (Дополнительный) | Сетевой атрибут стоимости, используемый для определения расстояния по элементам сети. Значение этого параметра перезаписывается, если для Режима передвижения (travel_mode в Python) установлено значение, отличное от Пользовательский. | String |
use_hierarchy_in_analysis (Дополнительный) |
Параметр не используется, если в наборе сетевых данных, используемом для выполнения анализа, не задан атрибут иерархии. В таких случаях используйте в качестве значения параметра "#". Значение этого параметра перезаписывается, если для Режима передвижения (travel_mode в Python) установлено значение, отличное от Пользовательский. | Boolean |
restrictions [restriction,...] (Дополнительный) | Определяет, какие сетевые атрибуты ограничения будут учитываться во время расчета. Значение этого параметра перезаписывается, если для Режима передвижения (travel_mode в Python) установлено значение, отличное от Пользовательский. | String |
attribute_parameter_values (Дополнительный) | Определяет значения параметра для атрибутов сети, имеющих параметры. Набор записей имеет два столбца, которые используются вместе для уникальной идентификации параметров, а также другой столбец, который определяет значение параметра. Значение этого параметра перезаписывается, если для Режима передвижения (travel_mode в Python) установлено значение, отличное от Пользовательский. Набор записей значений параметра атрибута имеет связанные атрибуты. Ниже приведены поля в таблице атрибутов с описанием. ObjectID: Управляемое системой поле ID. AttributeName: Имя сетевого атрибута, чей параметр атрибута задан строкой таблицы. ParameterName: Имя параметра атрибута, чье значение задано строкой таблицы. (Параметры типа объекта не могут быть обновлены с помощью данного инструмента.) ParameterValue: Значение, которое вы хотите задать для параметра атрибута. Если значение не указано, для параметра атрибута устанавливается значение NULL. | Record Set |
maximum_snap_tolerance (Дополнительный) | Максимальный допуск замыкания представляет собой самое дальнее расстояние, которое Network Analyst находится при размещении или повторном размещении точки в сети. Выполняется поиск подходящих ребер или соединений, далее выполняется замыкание точки на ближайший объект. Если подходящее положение не было найдено в пределах максимального допуска замыкания, то объект обозначается, как неразмещенный. | Linear Unit |
exclude_restricted_portions_of_the_network (Дополнительный) | Задает размещение сетевых местоположений.
| Boolean |
feature_locator_where_clause [[dataset_name, SQL_Query],...] (Дополнительный) | Выражение SQL, которое используется для выбора поднабора исходных объектов, ограничивающего сетевые элементы, на которых могут быть расположены заказы и станции. Например, для того чтобы заказы и станции не располагались на шоссе с ограниченным доступом, напишите выражение SQL, исключающее такие источники объектов. Обратите внимание, что другие объекты сетевого анализа, например барьеры, игнорируют локатор объекта с выражением WHERE во время загрузки. Более подробную информацию о синтаксисе SQL и о том, как он отличается между источниками данных, см. Справочник SQL по выражениям запросов, которые используются в ArcGIS. | Value Table |
populate_route_lines (Дополнительный) | Задает генерацию линий, отображающих истинную геометрию маршрутов.
| Boolean |
route_line_simplification_tolerance (Дополнительный) | Упрощенная протяженность геометрии маршрута. При упрощении сохраняются важнейшие точки на маршруте, например, повороты и перекрестки, составляющую основную форму маршрута, а остальные точки удаляются. Указываемое вами расстояние упрощения является максимальным допустимым смещением упрощенной линии от исходной. Упрощение линии уменьшает количество вершин и приводит к сокращению времени отработки. Значение этого параметра перезаписывается, если для Режима передвижения (travel_mode в Python) установлено значение, отличное от Пользовательский. | Linear Unit |
populate_directions (Дополнительный) | Задает, будут ли создаваться направления.
| Boolean |
directions_language (Дополнительный) | Язык, на котором создаются направления. Список языков, доступных в раскрывающемся меню, зависит от установленных на компьютере языковых пакетов ArcGIS. Если вы собираетесь опубликовать этот инструмент как часть сервиса на отдельном сервере ArcGIS, необходимо установить на сервере соответствующие языковые пакеты. При отсутствии того или иного языкового пакета на компьютере соответствующий язык не отображается в списке. Однако вместо выбора языка можно указать его код. | String |
directions_style_name (Дополнительный) | Задает стиль форматирования путевого листа.
| String |
save_output_layer (Дополнительный) | Задает, будут ли выходные данные содержать слой сетевого анализа с результатами.
В любом случае возвращаются автономные таблицы и классы объектов. Однако, администратор сервера может выбрать вывод слоя сетевого анализа, с тем чтобы настройку и результаты работы инструмента можно было отладить с использованием средств управления Network Analyst в среде ArcGIS Desktop. Это упрощает процесс отладки. В ArcGIS Desktop по умолчанию выходное местоположение слоя сетевого анализа находится во временной рабочей области, на том же уровне, что и временная база геоданных, то есть он хранится как одноуровневый элемент временной базы геоданных. Выходной слой сетевого анализа хранится в виде файла .lyr, имя которого начинается с _ags_gpna, а затем следует буквенно-числовое значение GUID. | Boolean |
service_capabilities [[String, {Long}],...] (Дополнительный) | Задает максимальный объем вычислительных ресурсов, выделяющихся при работе данного инструмента в качестве сервиса геообработки. Вы можете сделать это по двум причинам: чтобы избежать решения сервером задач, которые требуют больше ресурсов или времени на обработку, или чтобы создать несколько сервисов с различными возможностями VRP для поддержки ваших бизнес-задач. Например, если у вас имеется бизнес-модель, привязанная к сервису, вы можете предоставить бесплатный VRP-сервис, который поддерживает расчет максимум пяти маршрутов, и второй сервис, платный, поддерживающий расчет более пяти маршрутов. Помимо ограничения максимального количества маршрутов, вы можете ограничить количество заказов или точечных барьеров, добавляемых в анализ. Другим способом управления размерами задачи является настройка максимального количества объектов, обычно объектов улиц, которые могут пересекаться линейными или полигональными барьерами. Последний метод заключается в принудительном иерархическом решении, даже если пользователь предпочитает не использовать иерархию, когда заказы географически рассредоточены за пределами заданного расстояния по прямой.
| Value Table |
ignore_invalid_order_locations (Дополнительный) | Определяет, должны ли быть проигнорированы неправильные заказы при решении задачи выбора маршрута транспортного средства.
| Boolean |
travel_mode (Дополнительный) | Выберите режим передвижения для анализа. CUSTOM можно выбрать всегда. Чтобы появились другие режимы, они должны быть представлены в наборе сетевых данных в параметре Network_Dataset. (Функция arcpy.na.GetTravelModes содержит словарь объектов режима движения для класса сетевых объектов, а свойство name возвращает имя объекта режима передвижения.) Если режим определен в наборе сетевых данных и обеспечивает замещение значений параметров для моделирования маршруты передвижения легковых и грузовых автомобилей, пешеходов и других режимы передвижения. Выбрав режим здесь, вам не требуется указывать значения для следующих параметров, которые замещаются значениями, указанными в наборе сетевых данных:
| String |
ignore_network_location_fields (Дополнительный) | Задает, будут ли рассматриваться поля в сетевом местоположении при местонахождении заказов, стоянок или барьеров в сети.
| Boolean |
time_zone_usage_for_time_fields (Дополнительный) | Указывает часовой пояс для следующих входных полей даты-времени, поддерживаемых инструментом: TimeWindowStart1, TimeWindowEnd1, TimeWindowStart2, TimeWindowEnd2, InboundArriveTime и OutboundDepartTime для заказов; TimeWindowStart1, TimeWindowEnd1, TimeWindowStart2 и TimeWindowEnd2 для станций; EarliestStartTime и LatestStartTime для маршрутов; TimeWindowStart и TimeWindowEnd для перерывов.
Указание значений даты-времени по времени UTC применяется, когда не известен часовой пояс, в котором расположены заказы или станции, или когда заказы или станции расположены в нескольких часовых поясах, а вы хотите, чтобы все значения даты-времени были синхронизированы. Опция UTC применяется только в случае, когда атрибут часового пояса определяется набором сетевых данных. Во всех других случаях все значения даты-времени всегда считаются как Geo local (GEO_LOCAL в Python). | String |
overrides (Дополнительный) | String | |
save_route_data (Дополнительный) | Указывает, будут ли выходные данные включать файл .zip, содержащий базу геоданных, в которой хранятся входные и выходные данные анализа в формате, который может быть использован для дальнейшей публикации слоев маршрутов в ArcGIS Online или ArcGIS Enterprise. В ArcGIS Desktop выходное местоположение данного выходного файла – это временная папка. Вы можете определить местоположение временной папки с помощью arcpy.env.scratchFolder.
| Boolean |
Производные выходные данные
Имя | Объяснение | Тип данных |
solve_succeeded | Логическое значение, указывающее успешность выполнения анализа расчета задачи выбора маршрута транспорта. | Boolean |
out_unassigned_stops | В таблице приведен перечень заказов, которые не могут быть посещены маршрутами. | Table |
out_stops | Таблица предоставляет информацию об остановках, сделанных на станциях, на заказах и в перерывах. | Table |
out_routes | Класс объектов, который представляет водителей, транспортные средства и маршруты транспортных средств для задачи выбора маршрута. | Feature Class |
out_directions | Пошаговые инструкции, которые помогают водителям следовать назначенным маршрутам. | Feature Class |
out_network_analysis_layer | Слой сетевого анализа с настроенными в параметрах инструмента свойствами, который может использоваться в карте для дальнейшего анализа или отладки. | File |
out_route_data | Файл .zip, содержащий всю информацию для определенного маршрута. | File |
Пример кода
SolveVehicleRoutingProblem, пример 1 (окно Python)
Запустите инструмент с использованием только обязательных параметров.
import arcpy
orders = arcpy.FeatureSet()
orders.load("Stores")
depots = arcpy.FeatureSet()
depots.load("DistributionCenter")
routes = arcpy.RecordSet()
routes.load("RoutesTable")
arcpy.na.SolveVehicleRoutingProblem(orders, depots, routes, "","Minutes",
"Miles", "Streets_ND")
SolveVehicleRoutingProblem, пример 2 (автономный скрипт)
В следующем автономном скрипте Python показано, как использовать инструмент SolveVehicleRoutingProblem для выполнения заказов, используя транспортные средства. При выборе инструмента SolveVehicleRoutingProblem необходимо просто запустить один инструмент для решения всей задачи анализа, в отличие от инструмента MakeVehicleRoutingProblemLayer, который требует запуска нескольких инструментов из набора Network Analyst.
# Name: SolveVehicleRoutingProblem_Workflow.py
# Description: Find the best routes for a fleet of vehicles, which is operated
# by a distribution company, to deliver goods from a main
# distribution center to a set of grocery stores.
# Requirements: Network Analyst Extension
#Import system modules
import arcpy
from arcpy import env
import datetime
try:
#Check out the Network Analyst extension license
arcpy.CheckOutExtension("Network")
#Set environment settings
env.workspace = "C:/data/SanFrancisco.gdb"
env.overwriteOutput = True
#Set local variables
inNetworkDataset = "Transportation/Streets_ND"
timeUnits = "Minutes"
distanceUnits = "Miles"
inOrders = "Analysis/Stores"
inDepots = "Analysis/DistributionCenter"
inRoutes = "RoutesTable"
outGeodatabase = "C:\data\output\VRPOutputs.gdb"
#Create two new feature sets and one record set with same schema as
#Orders, Deopts and Routes parameter in Solve Vehicle Routing Problem tool.
#Load the feature from the existing feature classes and table in the feature
#set. Note that Solve Vehicle Routing Problem tool does not provide a way to
#map field names between your input feature classes and table and the
#feature set or record set parameters. To ensure that the attributes are
#correctly transfered, the input feature classes and table must have same
#field names as the feature sets and record sets.
orders = arcpy.GetParameterValue("SolveVehicleRoutingProblem_na",0)
orders.load(inOrders)
depots = arcpy.GetParameterValue("SolveVehicleRoutingProblem_na",1)
depots.load(inDepots)
routes = arcpy.GetParameterValue("SolveVehicleRoutingProblem_na",2)
routes.load(inRoutes)
#Call the SolveVRP tool and store the results in the result object
result = arcpy.na.SolveVehicleRoutingProblem(orders,depots, routes,"",
timeUnits, distanceUnits,
inNetworkDataset, outGeodatabase,
populate_directions="DIRECTIONS")
#print the solve status and output any warning messages from tool execution
solveSucceeded = result.getOutput(0)
print "Solve Succeeded: {0}".format(solveSucceeded)
print "Messages from solver are printed below."
print result.getMessages(1)
print "Script completed successfully"
except Exception as e:
# If an error occurred, print line number and error message
import traceback, sys
tb = sys.exc_info()[2]
print "An error occurred on line %i" % tb.tb_lineno
print str(e)
Параметры среды
Информация о лицензиях
- Basic: Требуется Network Analyst
- Standard: Требуется Network Analyst
- Advanced: Требуется Network Analyst